

PRELIMINARY

(Subject to Change)

AMBE-3000™ Vocoder Chip

Users Manual Version 1.00 January, 08

AMBE-3000TM Vocoder Chip Users Manual Version 1.00 January, 08 © Copyright, 2008 Digital Voice Systems, Inc 234 Littleton Road Westford, MA 01886

This document may not, in whole or in part be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent in writing from Digital Voice Systems, Incorporated. Every effort has been made to ensure the accuracy of this manual. However, Digital Voice Systems, Inc. makes no warranties with respect to the documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose. Digital Voice Systems, Inc. shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the examples herein. This includes business interruption and/or other loss which may arise from the use of this product. The information in this document is subject to change without notice.

Trademarks

AMBE-3000TM Vocoder Chip is a registered trademark of Digital Voice Systems, Inc. Other product names mentioned may be trademarks or registered trademarks of their respective companies and are the sole property of their respective manufacturers. All Rights Reserved Data subject to change

AMBE-3000TM Vocoder Chip END USER License Agreement

1.0 Preliminary Statements and Definitions

- 1.0 This nonexclusive end user product license agreement is a legal agreement between the customer (the END USER) and Digital Voice Systems, Inc. (DVSI) covering the terms and conditions under which DVSI's proprietary technology (that may consist of and not limited to software, hardware, documentation and other material which may be provided with DVSI Products) is licensed to the END USER as part of this PRODUCT.
- a) The PRODUCT shall mean the hardware, software, documentation and other materials that were provided by DVSI for which an END User has paid the required fees.
- b) Hardware can be in the form of Integrated Circuit Chips (such as Digital signal Processors) Circuit boards and electronics enclosed in a chassis.
- c) Software can be in form of computer code, code masked into an IC, software embedded in ROM or RAM, software stored on any media (such as CD-ROM, floppy disk, hard drive or Internet)
- d) Documentation means written information (whether contained in user or technical manuals, training materials, specifications or otherwise) specifically pertaining to the PRODUCT and made available by DVSI in any manner (including in print, on CD-ROM, or on-line).
- 1.2 Digital Voice Systems, Inc. (DVSI) has developed a voice coding method and algorithm (the "Technology") based on the Advanced Multi-Band Excitation ("AMBE®") voice coder. The technology codes speech at low bit rates and may include error correction bits.
- 1.3 "AMBE® Voice Compression Software" shall mean the speech coding software and/or firmware integrated into a hardware product.
- 1.4 "Voice Codec" shall mean the AMBE® Voice Compression Technology, firmware and associated documentation, including modifications, enhancements and extensions made by or for Digital Voice Systems, Inc. (DVSI) and including circuit boards, circuit diagrams, timing diagrams, logic diagrams, layouts, operating instructions and user manuals.
- 1.5 DVSI represents that it owns certain "Proprietary Rights" in the Technology and the AMBE® Voice Compression Software, including patent rights in the Technology, and patent rights copyrights, and trade secrets in the AMBE® Voice Compression Software. These rights include one or more of the following US Patents U.S. #6,199,037, #5,870,405, #5,826,222, #5,754,974, #5,715,365, #5,701,390, #5,664,051, #5,630,011, #5,581,656, #5,517,511, #5,49,177 #5,195,166 #5,081,681, B1 #6,161,089, #5,870,405, #5,649,050 and under other US and foreign patents and patents pending.
 AMBE is a registered trademark of Digital Voice Systems, Inc.

AMBE is a registered trademark of Digital Voice Systems, Inc. AMBE+ and AMBE+2 are trademarks of Digital Voice Systems, Inc.

- 1.6 "END USER" shall mean the person and/or organization to whom the DVSI Vocoder Product (software or hardware) was delivered or provided to as specified in the purchase order or other documentation. In the event that the END USER transfers his rights under this license to a third party as specified in Section 3.0, then this third party shall become an "END USER".
- 1.7 DVSI reserves the right to make modifications and other changes to its products and services at any time and to discontinue any product or service without notice.

2.0 License Granted

- 2.1 Subject to the conditions herein and upon initial use of the DVSI Product, DVSI hereby grants to END USER a non-exclusive, limited license to use the Product. Title to the AMBE® Voice Compression Technology remains with DVSI. No license is granted for use of the AMBE® Voice Compression Technology on any other device other than the original PRODUCT purchased from DVSI.
- 2.2 No license, right or interest in any trademark, trade name or service mark of DVSI is granted under this Agreement.
- 2.3 END USER shall not copy, extract, de-compile or otherwise reduce the Software to human-readable form, reverse engineer, disassemble, alter, duplicate, make copies of, create derivative works from, distribute, disclose, provide or otherwise make available to others, the Voice Compression Technology and/or trade secrets contained within the PRODUCT and/or Software and/or Documentation in any form to any third party without the prior written consent of DVSI. The END USER shall implement reasonable security measures to protect such trade secrets.

3.0 Transfer of License

This is a license, not a transfer of title, to the Software, Hardware and Documentation, and DVSI retains ownership of all copies of the Software, Hardware and Documentation. Customer acknowledges that the Software, Hardware and Documentation may contain trade secrets of DVSI, including but not limited to the specific design, and associated interface information

3.1 The END USER shall have the right to transfer the rights under this Agreement to a third party by either (i) providing the third party with a copy of this Agreement or (ii) providing the third party with an agreement written by the END USER (hereinafter "END USER Agreement") so long as the END USER Agreement is approved in writing by DVSI prior to transfer of the PRODUCT. The END USER Agreement shall contain comparable provisions to those contained herein for protecting the Proprietary Information from disclosure by such

third party. Third parties shall agree to accept all the terms and conditions under either Agreement or the END USER Agreement.

4.0 Term and Termination

- 4.1 This Agreement is effective upon initial delivery of the PRODUCT and shall remain in effect until terminated in accordance with this agreement.
- 4.2 This Agreement shall terminate automatically without notice from DVSI if END USER fails to comply with any of the material terms and conditions herein. END USER may terminate this Agreement at any time upon written notice to DVSI certifying that END USER has complied with the provisions of Section 3.0.
- 4.3 Upon termination of this Agreement for any reason, END USER shall: (i) return the PRODUCT and documentation purchased or acquired, or in Licensee's possession, to DVSI; (ii) have no further rights to any DVSI Software or the Technology without a separate written license from DVSI; (iii) discontinue all use of the PRODUCT;

All confidentiality obligations of Customer and all limitations of liability and disclaimers and restrictions of warranty shall survive termination of this Agreement. In addition, the provisions of the sections titled "U.S. Government End User Purchasers" and "General Terms Applicable to the Limited Warranty Statement and End User License" shall survive termination of this Agreement.

5.0 Payments

5.1 In consideration of the materials delivered as part of the Product, and in consideration of the license granted by DVSI for the PRODUCT, and in consideration of DVSI's performance of its obligations hereunder, the END USER agrees to pay to DVSI the fees as specified in DVSI's invoice. Payments of fees shall be received by DVSI prior to shipment of the PRODUCT.

6.0 Proprietary Notices

- 6.1 END USER shall maintain and not remove any copyright or proprietary notice on the Vocoder Product and/or Documentation and/or on the accompanying Software.
- 6.2 Reproduction of non-proprietary information found in DVSI Users Manuals or data sheets is permissible only if the END USER reproduces without alteration, and includes all copyright and other proprietary notices, all associated warranties, conditions and limitations on all copies, in any form.

7.0 Proprietary Information

- 7.1 The parties agree that the DVSI PRODUCT shall be considered Proprietary Information.
- 7.2 Except as otherwise provided in this Agreement, END USER shall not use, disclose, make, or have made any copies of the Proprietary Information, in whole or in part, without the prior written consent of DVSI.

8.0 Limited Warranty

8.1 DVSI warrants the PRODUCT to be free from defects in materials and workmanship under normal use for a period of ninety (90) days from the date of delivery. The date of delivery is set forth on the packaging material in which the Product is shipped. This limited warranty extends only to the Customer who is the original purchaser. If the PRODUCT is found to be defective and the condition is reported to DVSI, within the warranty period, DVSI may, at its option, repair, replace, or refund of the purchase price of the PRODUCT. DVSI may require return of the PRODUCT as a condition to the remedy.

Restrictions. This warranty does not apply if the Product (a) has been altered, (b) has not been installed, operated, repaired, or maintained in accordance with instructions supplied by DVSI, (c) has been subjected to abnormal physical or electrical stress, misuse, negligence, or accident;

- 8.2 Except as stated in Section 8.1, the PRODUCT is provided "as is" without warranty of any kind. DVSI does not warrant, guarantee or make any representations regarding the use, or the results of the use, of the PRODUCT with respect to its correctness, accuracy, reliability, correctness or otherwise. The entire risk as to the results and performance of the PRODUCT is assumed by the END USER. After expiration of the warranty period, END USER, and not DVSI or its employees, assumes the entire cost of any servicing, repair, replacement, or correction of the PRODUCT.
- 8.3 DVSI represents that, to the best of its knowledge, it has the right to enter into this Agreement and to grant a license to use the PRODUCT to END USER.
- 8.4 Except as specifically set forth in this Section 8.0, DVSI makes no express or implied warranties including, without limitation, the warranties of merchantability or fitness for a particular purpose or arising from a course of dealing, usage or trade practice, with respect to the PRODUCT. Some states do not allow the exclusion of implied warranties, so the above exclusion may not apply to END USER. No oral or written information or advice given by DVSI or its employees shall create a warranty or in any way increase the scope of this warranty and END USER may not rely on any such information or advice. The limited warranties under this Section 8.0 give END USER specific legal rights, and END USER may have other rights which vary from state to state.

AMBE-3000™ Vocoder Chip Users Manual Version 1.00, January, 08

9.0 Limitation of Liability

The END USER agrees that the limitations of liability and disclaimers set forth herein will apply regardless of whether the END USER has accepted the product or service delivered by DVSI.

- 9.1 In no event shall DVSI be liable for any special, incidental, indirect or consequential damages resulting from the use or performance of the PRODUCT whether based on an action in contract, or for applications assistance, or product support, or tort (including negligence) or otherwise (including, without limitation, damages for loss of business revenue, profits, business interruption, and loss of business information or lost or damaged data), even if DVSI or any DVSI representative has been advised of the possibility of such damages.
- 9.2 Because some states or jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to END USER.
- 9.3 DVSI's maximum liability for damages arising under this Agreement shall be limited to 20% (twenty percent) of the fees paid by END USER for the particular PRODUCT that gave rise to the claim or that is the subject matter of, or is directly related to, the cause of action.

10.0 Taxes

10.1 All payments required under Section 4.0 or otherwise under this Agreement are exclusive of taxes and END USER agrees to bear and be responsible for the payment of all such taxes (except for taxes based upon DVSI's income) including, but not limited to, all

sales, use, rental receipt, personal property or other taxes which may be levied or assessed in connection with this Agreement.

11.0 Expor

11.1 United States export laws and regulations prohibit the exportation of certain products or technical data received from DVSI under this Agreement to certain countries except under a special validated license. Some of the restricted countries include: Libya, Cuba, North Korea, Iraq, Serbia, Taliban in Afghanistan, Sudan, Burma, and Iran. The END USER hereby gives its assurance to DVSI that it will not knowingly, unless prior authorization is obtained from the appropriate U.S. export authority, export or re-export, directly or indirectly to any of the restricted countries any products or technical data received from DVSI under this Agreement in violation of said United States Export Laws and Regulations. DVSI neither represents that a license is not required nor that, if required, it will be issued by the U.S. Department of Commerce. Licensee shall assume complete and sole responsibility for obtaining any licenses required for export purposes.

12.0 Governing Law

12.1 This Agreement is made under and shall be governed by and construed in accordance with the laws of the Commonwealth of Massachusetts, except that body of law governing conflicts of law. If any provision of this Agreement shall be held unenforceable by a court of competent jurisdiction, that provision shall be enforced to the maximum extent permissible, and the remaining provisions of this Agreement shall remain in full force and effect. This Agreement has been written in the English language, and the parties agree that the English version will govern.

Table of Contents

1	Product Introduction	9
	1.1 Advances in Vocoder Design	9
	1.2 AMBE-3000™ Vocoder Chip Features	9
	1.3 Typical Applications	10
2	Initial Design Considerations	11
	2.1 A/D – D/A Codec chip Selection	11
	2.2 Vocoder Speech and FEC Rate Selection	12
	2.3 Operating Modes 2.3.1 Codec Mode 2.3.2 Packet Mode	12 12 12
	2.4 Switching Between Modes via Packets	13
	 2.5 Interface Selection 2.5.1 SPI Interface 2.5.2 UART Interface 2.5.3 McBSP Interface 2.5.4 Parallel Interface 2.5.5 Parallel Port Packet Interface 	13 14 15 16 18 18
	 2.6 Special Functions Description 2.6.1 Voice Activation Detection (VAD), Comfort Noise Insertion (CNI) 2.6.2 Echo Canceller (EC_ENABLE Pin 120) 2.6.3 DTMF Dual Tone Multiple Frequency, Detection and Generation 2.6.4 Soft Decision Error Correction (SD_ENABLE Pin 5) 2.6.5 Skew Control (SK_ENABLE Pin 6) 2.6.6 Noise Suppressor (NS_ENABLE Pin 7) 2.6.7 Low Power Mode 	19 19 19 20 20 20 21 21
3	Hardware Information	22
	3.1 Special Handling Instructions	22
	3.2 Package Detail	23
	3.3 Package Type	24
	3.4 AMBE-3000™ Chip Markings	25
	3.5 Pin Out Table	26
	3.6 Hardware Configuration Pins	30
4	Electrical Characteristics and Requirements	31
	4.1 Normal Operating Conditions	31
	4.2 Recommended Operating Conditions	31
	4.3 Absolute Maximum Ratings	31
	4.4 Thermal Resistance Characteristics	32
	4.5 Power Sequencing Requirements	32

	4.6 Power-Down Sequencing:	32
	4.7 Signal Transition Levels	33
5	Codec A/D / D/A Interface	34
	5.1 Vocoder Front End Requirements	34
6	Data and Configuration Packets	36
	6.1 Overview	36
	6.2 Codec Mode Operation	36
	6.3 Packet Mode Operation	36
	6.4 Packet Interfaces	37
	6.5 Packet Format 6.5.1 START_BYTE (1 byte) 6.5.2 LENGTH (2 bytes) 6.5.3 TYPE (1 byte) 6.5.4 Packet Fields	37 37 37 37 38
	6.6 Control Packet Format (Packet Type 0x00) 6.6.1 Control Packet Fields	38 38
	6.7 Speech Packet Format (Packet Type 0x02) 6.7.1 Speech Packet Fields	46 46
	6.8 Channel Packet Format (Packet Type 0x01) 6.8.1 Channel Packet Fields	47 47
	 6.9 Example Packets 6.9.1 Speech Packet Example 1 6.9.2 Speech Packet Example 2 6.9.3 Channel Packet Example 1 6.9.4 Channel Packet Example 2 	48 48 49 50 50
7	Appendices	52
	7.1 Associated Algorithmic Delay 7.1.1 Encoder Delay 7.1.2 Decoder Delay 7.1.3 Total Delay	52 52 52 52 52
8	Support	53
	8.1 DVSI Contact Information	53
9	Environmental Specifications	54
10	Notes 57	
11	1 History of Revisions	58

List of Figures

Figure 1 Basic Operation	
Figure 2 B Typical Echo Path	20
Figure 3 Mechanical Details	23
Figure 4 Pins Out	24
<u>List of Tables</u>	
Table 1 Interface Selection	
Table 2 Interface Configurations	
Table 3 SPI Interface Pins	
Table 4 UART Interface Pins	
Table 5 McBSP Interface Pins	
Table 6 Parallel (PPT) Interface Pins	
Table 7 Soft Decision Error Correction	
Table 8 Pinout List	
Table 9 Interface Configuration Settings	
Table 10 Normal Operating Conditions	
Table 11 Recommended Operating Conditions	
Table 12 Absolute Maximum Ratings	
Table 13 Thermal Resistance Characteristics	
Table 14 General Packet Format	
Table 15 Packet Types	
Table 16 General Field Format	
Table 17 Control Packet Fields	
Table 18 VOCODER_ID Field Format	
Table 19 VOCODER_ID Field – Data	
Table 20 CMODE Field Format	
Table 21 CMODE Parameters Table	
Table 22 TONE Field Format	
Table 23 TONE Index Values	
Table 24 TONE AMPLITUDE Values	
Table 25 E_CMODE Field Format	
Table 26 D_CMODE Field Format	
Table 27 RATE_T Field Format	
Table 28 Rate Index Numbers	
Table 29 RATE_P Field Format	
Table 30 Rate Control Words and Pin Settings	
Table 31 INIT Field Format	
Table 32 INIT Field - Data	
Table 33 LOWPOWER Field Format	
Table 34 LOWPOWER Field Settings	
Table 35 VOCODER _ID Field Format	
Table 36 PKT_STARTCODEC Field Data	
Table 37 PKT_STOPCODEC Field	
Table 38 PKT_PRODID Field	
Table 39 PKT_VERSTRING Field	
Table 40 PKT_HALT Field	
Table 41 Speech Packet Fields	
Table 42 SPEECHD Field Format	
Table 43 Channel Packet Fields	
Table 44 CHAND Field - Format	
Table 45 Speech Packet Example 1	48

$\begin{array}{l} AMBE\text{-}3000^{\text{\tiny TM}}\ Vocoder\ Chip\ Users\ Manual}\\ Version\ 1.00,\ \ January,\ 08 \end{array}$

Table 46 Speech Packet Example 2	50
Table 47 Channel Packet Example 1	50
Table 48 Channel Packet Example 2	51

Product Introduction

Digital Voice Systems Inc.'s AMBE-3000TM Vocoder Chip is an extremely flexible, high-performance speech compression coder. DVSI's has implemented its most advanced AMBE+2TM vocoder technology into a single DSP chip solution to achieve unmatched voice quality, with robustness to background noise and channel bit errors. DVSI's AMBE+2 vocoder technology outperforms G.729 and G.726 while adding additional features and benefits from DVSI's previously industry-leading AMBE+TM Vocoder. The superior performance characteristics of the new AMBE+2TM Vocoder make it ideally suited for mobile radio, secure voice, satellite communications, computer telephony, and other digital voice and storage applications where bandwidth is at a premium and low data rate, high-quality is imperative.

The field-proven success of this technology has resulted in it being recognized as the standard for voice quality in communications systems around the globe. DVSI's AMBE+2 technology is the preferred choice for many mobile radio manufacturers including DMR in Europe and APCO Project 25 in North America. In addition, satellite systems such as Inmarsat, BGAN use this technology because of its superior voice quality at low bit rates.

1.1 Advances in Vocoder Design

The AMBE-3000TM voice coder maintains natural voice quality and speech intelligibility at rates as low as 2.0 kbits/sec. The AMBE-3000TM Vocoder chip provides a high degree of flexibility in selecting the speech and FEC (Forward Error Correction) data rates. The user can separately select these parameters in 50 bps increments for total rates from 2.0 kbps to 9.6 kbps. Plus, the AMBE-3000™ Vocoder Chip offers similar features and backwards compatibility to DVSI's AMBE-2000™ and AMBE-1000TM Vocoder Chips allowing it to be incorporated into a system that can be interoperable with these DVSI products.

1.2 AMBE-3000™ Vocoder Chip Features

The AMBE-3000TM Vocoder Chip includes a number of advanced features that are combined with low power consumption to offer the affordability, mobility and power efficiency required by virtually all mobile communication devices.

DVSI's Full Duplex AMBE+2TM Voice Coder Superior Voice Quality, Low Data Rate Speech Coding Supports Variable Data Rates of 2.0 kbps to 9.6 kbps in 50 bps increments Minimal algorithmic processing delay

Robust to Bit Errors & Background Noise Variable FEC Rates - 50 bps to 7.2 kbps User Selectable Forward Error Correction rates Viterbi Decoder (rate 1/4 or more)

Voice Activity Detection (VAD) / Comfort Noise Insertion **Echo Cancellation** Noise Suppression DTMF detection and regeneration with North American call progress tones

Very Low Power Consumption with Power-Down Mode Compact Single Chip Solution: 128 pin LQFP No External Memory Required Low Cost a value for mobile products

1.3 Typical Applications

The AMBE-3000TM vocoder chip's level of performance can lead to the successful development and deployment of wireless communication systems in the most demanding environments. It has been thoroughly evaluated and tested by international manufacturers under various conditions using a variety of languages. This assures the user is getting the best vocoder available and makes the DVSI vocoder the logical choice without the need for additional comparison tests. Plus the fact, that DVSI's Voice Compression technology has been implemented worldwide for more than 19 years, delivers the added security of a field proven technology that can play a key role in making any communication system an overall success.

Satellite Communications Digital Mobile Radio Secure Communications Cellular Telephony and PCS Voice Multiplexing

Initial Design Considerations

Some of the initial design considerations the application engineer will face are the following:

- Choice of A/D-D/A chip.
- Speech and FEC Rates.
- Mode of Operation
- Choice of Packet Interface.

Implementing the AMBE-3000™ vocoder chip into a communication system requires the selection of various components. The AMBE-3000TM Vocoder Chip offers multiple interfaces for flexibility in integration into a variety of design configurations.

In its simplest model, the AMBE-3000TM can be viewed as two separate components, the Encoder and the Decoder. The Encoder receives an 8 kHz sampled stream of speech data (16-bit linear, 8-bit Alaw, or 8-bit ulaw) and outputs a stream of channel data at the desired rate. Simultaneously, the AMBE-3000TM Vocoder Chip receives compressed voice channel data. This data is (decoded) by the AMBE-3000TM Vocoder Chip, then reconstructed into a digital speech signal and sent to the D/A. The encoder and decoder functions are fully asynchronous.

The special functions of the AMBE-3000TM chip, such as echo cancellation, voice activation/detection, power mode control, data/FEC rate selection, etc. can be controlled either through hardware control pins and/or through the Packet interface.

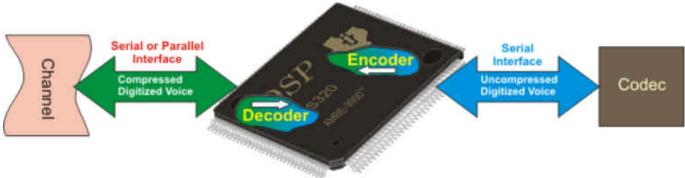


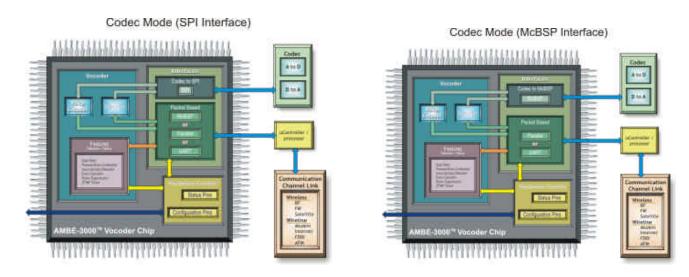
Figure 1 Basic Operation

2.1 A/D – D/A Codec chip Selection

The AMBE-3000™ Vocoder Chip can be configured to transmit and receive digitized speech to and from most linear, a-law, or u-law A/D-D/A codecs. The format of the incoming and outgoing speech data streams are coupled, that is to say they must be the same format (16-bit linear, 8-bit Alaw, or 8-bit µlaw). The digitized speech from the external A/D is converted into compressed digital data (encoded) by the AMBE-3000TM Vocoder Chip and output to the channel interface. Alternatively, speech data can be sent to/from the AMBE-3000TM vocoder chip via a packet interface.

The choice of the A/D-D/A chip is critical to designing a system with superior voice quality. Given that Alaw and µlaw companding chips are already incorporating some compression to reduce the number of bits per sample, it is recommended that, when possible, a 16-bit linear device be used for maximum voice quality. When choosing a device, pay particular attention to Signal to Noise ratios and Frequency Responses of any filters that may be present on the analog front end of these chips. Generally speaking, the flatter the frequency response over the voice spectrum (20-4000Hz) the better the overall system will sound. The Alaw and ulaw interfaces are mainly provided for the design engineer who is trying to fit to preexisting conditions or is under cost savings restraints.

2.2 Vocoder Speech and FEC Rate Selection

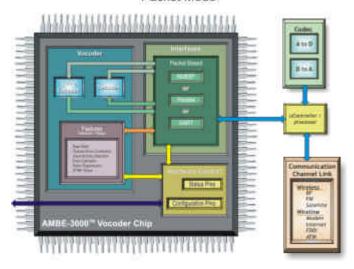

The voice coding rate as well as the FEC coding rate can be selected individually on the AMBE-3000TM. These rates are selected by using a configuration control packet, or through hardware configuration pins. The hardware configuration pins provide the user with 48 pre-configured voice/FEC rates. If rates other than these are desired, then a configuration control packet can be used to configure voice and FEC rates in 50 bps increments.

2.3 Operating Modes

There are two modes (Codec Mode and Packet Mode) for the AMBE-3000TM vocoder chip. Both modes can take advantage of the variety of interfaces available.

2.3.1 Codec Mode

In Codec mode the speech data I/O (to/from codec) is a serial stream of samples that uses either the SPI or the McBSP interface and the channel data is configured into data packets that are sent across either the UART, parallel port, or McBSP (when not used as the codec interface). When using Codec Mode the speech and channel data use separate interfaces. Packets containing channel data are sent and received every 20 ms.


2.3.2 Packet Mode

In Packet mode, the speech and channel data use the same interface UART, parallel port, or McBSP serial port. All of the speech and channel data to/from the AMBE-3000TM is formatted into a packets. (See Section 7). It is the responsibility of the designed system to extract the speech/channel data from these packets in order to pass the information to/from the codec/channel interface.

When in packet mode AMBE-3000TM sends a packet in response to every packet received. When a control packet is received it will respond with a control response packet. When a speech packet is received the AMBE-3000TM responds with a channel packet. When a channel packet is received it responds with a speech packet.

Packet Mode

2.4 Switching Between Modes via Packets

After reset, the AMBE-3000TM is set to the mode corresponding to the Interface Configuration Pins (see Table 2 Interface Configurations). The AMBE-3000TM can be switched from Packet Mode to Codec Mode by sending it a START_CODEC packet and can be switched back into packet mode by sending a STOP_CODEC packet. (See Section 7) The chip can be configured to start-up in packet mode and control packets can be sent to configure additional settings. After all configuration packets have been sent to the AMBE-3000TM a START_CODEC packet can be sent to the AMBE-3000TM to put the chip into Codec Mode and the chip will begin outputting packets every 20ms. At any time the user can send a STOP_CODEC packet and the AMBE-3000TM will re-enter packet mode and stop outputting channel packets.

2.5 Interface Selection

Basic communication to/from the AMBE-3000™ consists of digitized speech data samples I/O and compressed speech data I/O. The chip can be configured to use separate interfaces for each of the speech and compressed data can use the same interface.

The AMBE-3000TM supports four separate physical interfaces: SPI, UART, parallel port, and McBSP serial port. The user has the option of selecting the interface for both the Codec and Packet data. This flexibility allows for easy integration with the system under design. To select which physical interface is to be used for Codec data and for Packet data the AMBE-3000TM provides hardware configuration pins. The available interface combinations are shown in Table 2 Interface Configurations

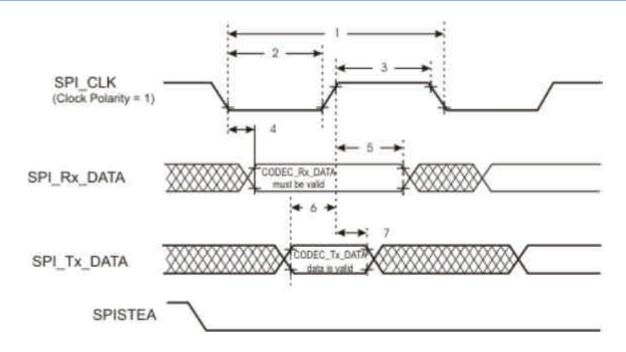
Physical Interface	Codec Interface	Packet Interface	Description
SPI			The SPI Interface is only for Codec Samples
McBSP	V	Ø	The McBSP Interface can be used for either Codec Samples OR Packet Data
UART			The UART Interface is only for Packet Data
Parallel		V	The Parallel Interface is only for Packet Data

Table 1 Interface Selection

Interface Confi	guration	IS				
Mode	Configuration Pin #		in #'s	Speech Interfece	Packet Interface	
Mode	4	3	2	Speech Interface	racket interface	
Codec Mode	0	0	0	SPI	UART	
Codec Mode	0	0	1	SPI	PPT	
Codec Mode	0	1	0	SPI	McBSP	
Codec Mode	0	1	1	McBSP	UART	
Codec Mode	1	0	0	McBSP	PPT	
Packet Mode	1	0	1	UART		
Packet Mode	1	1	0	PPT		
Packet Mode	1	1	1	McBSP		

Table 2 Interface Configurations

The Codec interface can be set to use the SPI or McBSP Interface in Codec Mode or share the same interface as the channel when operating in Packet mode. The channel interface (compressed data) of the AMBE-3000TM Vocoder Chip is always a packet format and can be configured to use either a serial (UART or McBSP) or a parallel interface.


2.5.1 SPI Interface

The serial peripheral interface (SPI) is a high-speed, synchronous serial I/O port that can be used as the speech interface to the codec. This interface allows a serial bit stream to be transferred between the AMBE-3000TM and an audio codec. The interface includes four-pins. The SPI interface is designed for speech data only and may be used only in CODEC Mode.

Pin	Pin Name	Direction	Description
27	SPI_CLK	Input	A/D Serial clock.
28	SPISTEA	Input	
31	SPI_TX_DATA	Input	Serial Transmit Data
32	SPI_RX_DATA	Output	Serial Receive Data

Table 3 SPI Interface Pins

SPI External Timing †‡

NO.			MIN	MAX	UNIT
1	tc(CC)S	Cycle time, CODEC_CLK	4tc(LCO)‡		ns
2§	tw(CCL)S	Pulse duration, CODEC_CLK low	0.5tc(SPC)S- 10	0.5tc(SPC)S	ns
3§	tw(CCH)S	Pulse duration, CODEC_CLK high	0.5tc(SPC)S- 10	0.5tc(SPC)S	ns
4§	td(CCL-CRxD)S	Delay time, CODEC_CLK low to CODEC_Rx_DATA valid	0.375tc(SF	PC)S- 10	ns
5§	tv(CCH- CRxD)S	Valid time, CODEC_Rx_DATA valid after CODEC_CLK high	0.75tc(\$	0.75tc(SPC)S	
6§	tsu(CTxD -CCH)S	Setup time, CODEC_Tx_DATA before CODEC_CLK high	0	0	
7§	tv(CCH- CTxD)S	Valid time, CODEC_Tx_DATA valid after CODEC_CLK high	0.5tc(S	0.5tc(SPC)S	

[†] The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.

2.5.2 UART Interface

The serial interface supports asynchronous communication of real-time compressed voice data to other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format. Selection of a serial mode restricts all Packet transfers to occur through a UART port. The UART interface is designed for packet data. This means in Codec Mode the UART can be used for channel data only. In Packet mode the UART can be used for both speech data and channel data.

Pin	Pin Name	Direction	Description
111	UART_TX	Output	UART Transmit Data
112	UART_RX	Input	UART Receive Data

 $[\]ddagger \ tc(SPC) = CODEC \ clock \ cycle \ time = LSPCLK \ or \ LSPCLK/(SPIBRR_1)$

tc(LCO) = LSPCLK cycle time

[§] The active edge of the CODEC_CLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).

Table 4 UART Interface Pins

The AMBE-3000™ transmits formatted packets using pin UART_TX and receives formatted packets using pin UART_RX. Each serial word transmitted or received uses 8 data bits, no parity bits, and one stop bit. The serial port operates at baud rates of up to 460800 baud.


2.5.3 McBSP Interface

The Multichannel Buffered Serial Ports (McBSP) is a synchronous serial communication port. This port can be used to connect to E1/T1 lines, phone-quality codecs for modem applications or high-quality stereo audio DAC devices. The beginning of a frame of data is provided by a frame signal. This transmit frame signal and the transmit clock signal are generated by the AMBE-3000TM Vocoder Chip. In Codec Mode the McBSP interface can be used for either speech data or for channel data. In Packet Mode the McBSP interface is used for both speech data and channel data.

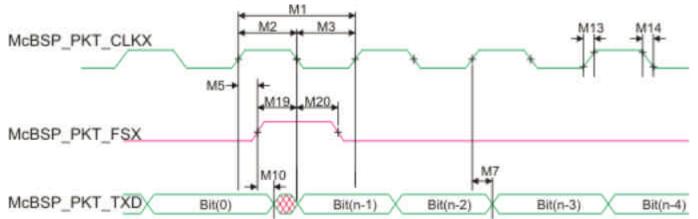

Pin	Pin Name	Direction	Description	
18	McBSP_PKT_RxD	Input	Serial Receive Data	
19	McBSP _PKT_TxD	Output	Serial Transmit Data	
21	McBSP_PKT_CLKR	Input	Serial Receive Clock	
22	McBSP _PKT_FSX	Output	Serial Transmit Frame	
23	McBSP _PKT_CLKX	Output	Serial Transmit Clock	
24	McBSP _PKT_FSR	Input	Serial Receive Frame	

Table 5 McBSP Interface Pins

The serial port packet interface is a synchronous serial communication port. The serial port packet interface consists of 3 input pins and 3 output pins. Packets are transmitted using data pin McBSP_PKT_TxD, clock pin McBSP_PKT_CLKX, and framing pin McBSP_PKT_FSX. Packets are received using data pin McBSP_PKT_RxD, clock pin McBSP_PKT_CLKR, and framing pin McBSP_PKT_FSR.

No.	Parameter				MIN MAX	Unit
M1	tc(CKRX)	Cycle time, CLKR/X		CLKR/X int	2P	ns
M2	tw(CKRXH)	Pulse duration, CLKR/X high		CLKR/X int	D-5§ D+5§	ns
М3	tw(CKRXL)	Pulse duration, CLKR/X low		CLKR/X int	C-5§ C+5§	ns
M4	td(CKRH-FRV)	Delay time CLKR high to internal FSR	valid	CLKX int	0 4	ns
				CLKX ext	3 27	
M5	td(CKXH-FXV)	Delay time CLKX high to internal FSX	valid	CLKX int	0 4	ns
				CLKX ext	3 27	
M6	td:-(CKVII DVIIZ)	Disable time, CLKX high to DX high im	pedance	CLKX int	8	ns
IVIO	tdis(CKXH-DXHZ)	following last data bit		CLKX ext	14	
		Delay time, CLKX high to DX valid. Th	s applies to all	CLKX int	9	ns
		bits except the first bit transmitted.		CLKX ext	28	
		Delay time, CLKX high to DX valid	DXENA = 0	CLKX int	8	
M7	td(CKXH-DXV)	V) Delay time, CLRX high to bx valid	DAEINA - U	CLKX ext	14	
		Only applies to first bit transmitted		CLKX int	P+8	
		when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 1	CLKX ext	P + 14	
		Enable time, CLKX high to DX driven	DXENA = 0	CLKX int		ns
			DALIWA 0	CLKX ext	0	
M8	ten(CKXH-DX)	Only applies to first bit transmitted		CLKX int	6	
		when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 1	CLKX ext	P+6	ns
		Delay time, FSX high to DX valid	DXENA = 0	FSX int	8	
		,	BALLIUT 0	FSX ext	14	
M9	td(FXH-DXV)	Only applies to first bit transmitted		FSX int	P+8	
		when in Data Delay 0 (XDATDLY=00b) mode.	DXENA = 1	FSX ext	P + 14	
		Enable time, FSX high to DX driven	DXENA = 0	FSX int	0	ns
			DALINA O	FSX ext	6	
M10	ten(FXH-DX)	, , , , , , , , , , , , , , , , , , , ,		FSX int	Р	
		when in Data Delay 0 (XDATDLY=00b) mode	DXENA = 1	FSX ext	P+6	

NO.			MIN MAX	UNIT
	McBSP module clock (CLKG CLKX CLKR) range		1	kHz
			20§	MHz
	McBSP module cycle time (CLKG CLKX CLKR) range		50	ns
			1	ms
M11	tc(CKRX) Cycle time, CLKR/X	CLKR/X ext	2P	ns
M12	tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low	CLKR/X ext	P-7	ns

M13	tr(CKRX) Rise time	CLKR/X	7	ns
		CLKR/X ext		
M14	tf(CKRX) Fall time, CLKR/X CLKR/X ext 7 ns			
M15	tsu(FRH-CKRL) Setup time external FSR high before CLKR low	CLKR int	18	ns
		CLKR ext	2	ns
M16	th(CKRL-FRH) Hold time external FSR high after CLKR low	CLKR int	0	ns
		CLKR ext	6	ns
M17	tsu(DRV-CKRL)Setup time DR valid before CLKR low	CLKR int	18	ns
		CLKR ext	2	ns
N/10	41/CANT DDAY H 114. DD 1.1 6 CAND I	CL IVD : 4	0	
M18	th(CKRL-DRV) Hold time DR valid after CLKR low	CLKR int	0	ns
		CLKR ext	6	ns
M19	tsu(FXH-CKXL) Setup time external FSX high before CLKX low	CLKR int	18	ns
/	and the second control of the second control	CLKR ext	2	ns
M20	th(CKXL-FXH) Hold time external FSX high after CLKX low	CLKR int	0	ns
		CLKR ext	6	ns

2.5.4 Parallel Interface

Pin#	Description	Direction	Description
33	PACKET_DATA0	I/O	
34	PACKET _DATA1	I/O	
35	PACKET _DATA2	I/O	
36	PACKET _DATA3	I/O	Parallel Port Transmit/Receive
37	PACKET_DATA4	I/O	Data
38	PACKET _DATA5	I/O	
40	PACKET_DATA6	I/O	
41	PACKET_DATA7	I/O	
46	PPT_READ	Input	PPT Read Request (Active Low)
47	PPT_WRITE	Input	PPT Write Request (Active Low)
48	PPT_ACK	Output	PPT Transfer Acknowledge

Table 6 Parallel (PPT) Interface Pins

2.5.5 Parallel Port Packet Interface

The parallel interface runs asynchronously and allows all Packet data transfers (including the control functions) to be performed on an 8-bit wide bus. The parallel port interface (PPT) requires 11 pins total. When parallel port is used for the Packet interface the UART or the McBSP serial interface can not be used. The Parallel interface is designed for packet data. This means in Codec Mode the Parallel interface can be used for channel data only. In Packet mode the Parallel interface can be used for both speech data and channel data.

The packet data from the AMBE-3000TM is read by setting the pin PPT_READ low, then waiting for the AMBE-3000TM to set PPT_ACK low. After PPT_ACK goes low, the 8 data pins are valid, after the pins are read PPT_READ should be set high. After PPT_READ goes high, the AMBE-3000TM will set PPT_ACK high.

To write packet data to the AMBE-3000TM first the data is transferred to the 8 data pins and then the PPT_WRITE pin must be set low. Then the AMBE-3000TM reads the data from the pins and sets PPT_ACK low. After the AMBE-3000TM sets PPT_ACK low, PPT_WRITE pin must set high, at which time, the AMBE-3000TM will set PPT_ACK high.

2.6 Special Functions Description

The special functions of the AMBE-3000™ chip, such as voice activation/detection, echo cancellation, DTMF, data/FEC rate selection, power mode control, etc. can be controlled either through hardware control pins and/or through the packet interface. The hardware inputs are only accessed for input during the first 200 microseconds after a hardware reset on RESETN. For predictable operation these signals must remain stable over this time period. After this 200 microseconds initialization period changes on these pins are ignored, unless another reset is performed.

2.6.1 Voice Activation Detection (VAD), Comfort Noise Insertion (CNI)

The Voice Activation Detection (VAD) algorithm along with the Comfort Noise Insertion (CNI) feature of the AMBE-3000TM chip performs useful functions in systems trying to convert periods of silence, that exist in normal conversation, to savings in system bandwidth or power. VAD can be enabled by either a hardware configuration pin or as part of a control packet.

With the VAD functions enabled, when periods of silence occur, the encoder will output a silence frame (in-band). This silence frame contains information regarding the level of background noise, which allows the corresponding decoder to synthesize a "Comfort Noise" signal at the other end. The comfort noise is intended to give the listener the feeling that the call is still connected, as opposed to producing absolute silence, which can give the impression that, the call has been "dropped". The decoder will produce a comfort noise frame if it receives an in-band silence frame (produced only by an encoder with VAD enabled). The synthesis of a Comfort Noise frame by the decoder is not dependant on VAD being enabled.

If the VAD features are being used to reduce transmit power during times of conversational silence, DVSI recommends that a silence frame be transmitted at the start of the period and approximately each 500-1000 milliseconds thereafter. This is to ensure that the parameters regarding the levels of background noise are transmitted to the decoder for the smoothest audible transitions between synthesized speech and synthesized silence.

The silence threshold value is -25 dBm0 in the VAD algorithm. Each frame that exceeds this level will be classified as voice. If the frame level is less than -25 dBm0 the voice/silence decision will be determined based upon various adaptive thresholds.

2.6.2 Echo Canceller (EC_ENABLE Pin 120)

The AMBE-3000TM voice coder contains an echo canceller that can be selectively enabled or disabled via either hardware pin or setting of control command packet. The echo canceller is suitable for canceling the local echo caused by a 2-to-4 wire hybrid and can achieve echo cancellation of approximately 30dB or more. Only the linear portion of the echo can be cancelled, so circuits should be designed to minimize non-linearities. The Echo Return Loss (ERL) of the analog circuit must be 6dB or more for proper echo canceller operation. Linear CODECs will generally provide better performance than mu-law or A-law codecs due to lower quantization noise.

The AMBE-3000TM Vocoder Chip employs an adaptive echo cancellation algorithm to cancel echoes of the decoder output present at the encoder input.

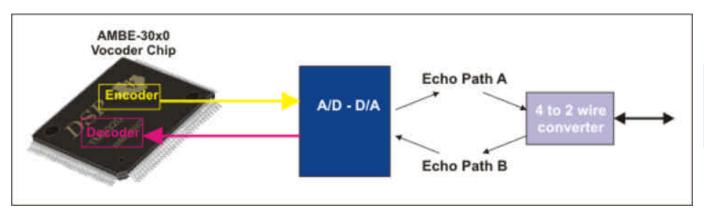


Figure 2 B Typical Echo Path

The echo canceller can be activated either through the hardware pin, or through the Packet interface.

2.6.3 DTMF Dual Tone Multiple Frequency, Detection and Generation

The AMBE-3000TM Vocoder Chip is capable of detecting, transmitting, and synthesizing DTMF tones. When the encoder detects DTMF tones, the output packet will have a special DTMF ID word in a control packet, and the Voice Data field will contain the DTMF tone data. The DTMF tone detected along with amplitude information is placed in the DTMF control word. Additionally, the encoder passes the DTMF data in-band (within the regular voice data bits) so that normal DTMF tones pass seamlessly from the encoder to the decoder for synthesis. The decoder synthesizes a DTMF tone in response to reception of an in-band DTMF tone frame or by setting the DTMF control word in the control packet. When this Voice Data is received by an AMBE-3000TM Vocoder Chip decoder, it will regenerate the inband tone. The AMBE-3000TM Vocoder Chip can also generate "Dual Tones" at many different frequencies. Each tone packet generates 20 milliseconds of output tones. The length of the output tones can be extended by repeating the tone packet. DTMF is always enabled.

2.6.4 Soft Decision Error Correction (SD ENABLE Pin 5)

Significant improvement in FEC performance can be added by setting up a receiver so that the demodulator is making a finer estimation of the received energy prior to sending it to the decoder, this is called soft-decision decoding. The AMBE-3000TM vocoder chip utilizes a 4-bit soft decision decoder. The bits are defined as follows:

Decision Value (Binary)	Interpretation
0000	Most confident 0
0111	
1000	
1111	Most confident 1

Table 7 Soft Decision Error Correction

Enabling the soft-decision error correction does nothing to the encoder packet. The packet will look like a normal encoded packet. The user must implement circuitry at the receive end of the channel for making a finer (4 bit) estimation of the received energy. The AMBE-3000TM decoder packet structure is altered to the point where the decoder expects each voice data bit of the encoded packet to be represented by 4 soft decision (SD) bits. The decoder will make the decision of whether or not a 1 or a 0 is represented by the SD bits.

2.6.5 Skew Control (SK_ENABLE Pin 6)

The AMBE-3000™ Vocoder chip processes speech in voice frames that are approximately 20 ms in duration. Skew Control can provide the designer with flexibility in dealing with clock drift. The AMBE-3000™ Vocoder chip skew control feature allows the vocoder chip to compensate for drift between the frame and sample rate clocks.

Codec Mode

When skew control is enabled, the AMBE-3000TM adjusts the frame boundaries so that they occur on the rising edge of the TXRQST signal. The frame size can vary between 156 and 164 samples.

Packet Mode Skew Control Enable

In packet mode the normal length is 160 of the input speech packets is 160 samples. However this can vary between 156 and 164 samples in length. Output speech packets can also vary in length from 156 to 164 samples.

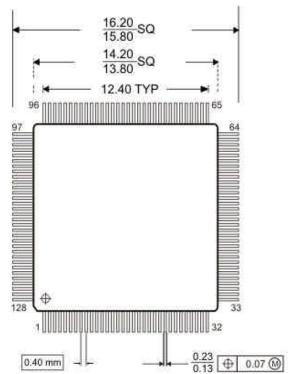
2.6.6 Noise Suppressor (NS ENABLE Pin 7)

The integrated Noise suppressor feature of the AMBE- 3000^{TM} is used to reduce the effect of background noise in the encoder input signal. The Noise suppressor is applied to both silence frames and voice frames, but not tone frames. When the noise suppressor is started it may take up to a few seconds to converge allowing for it do begin fully working.

2.6.7 Low Power Mode

In order to minimize power consumption requirements, during periods of inactivity the AMBE-3000TM Vocoder Chip enters into a low-power state. In this mode the AMBE-3000TM Vocoder Chip will return to normal operation "wake-up" when it receives packet data (serial or parallel) or if the chip is reset. Low power mode can also be set through hardware pin control or configuration control packet.

3 Hardware Information


ECTION 3

The AMBE-3000TM Vocoder Chip uses Texas Instruments TMS320F2811 core. The TMS320F2811 DSP Design uses High-Performance Static CMOS Technology with a low-power Core (1.8-V @135 MHz), and 3.3-V I/O. This generation of TI DSPs, are highly integrated, high-performance solutions for demanding control applications. For more details on handling, electrical characteristics, packaging, or timing constraints please refer to the TMS320F2811manual found at http://focus.ti.com/docs/prod/folders/print/tms320f2811.html.

3.1 Special Handling Instructions

The AMBE-3000TM uses the TM320F2811PBK core. For more details on handling, electrical characteristics, packaging, or timing constraints please refer to the TI manual found at http://www-s.ti.com/sc/psheets/sprs039c.pdf (Adobe Acrobat). To avoid damage from the accumulation of a static charge, industry standard electrostatic discharge precautions and procedures must be employed during handling and mounting.

3.2 Package Detail

AMBE-3000TM Vocoder Chip All Dimensions are in millimeters

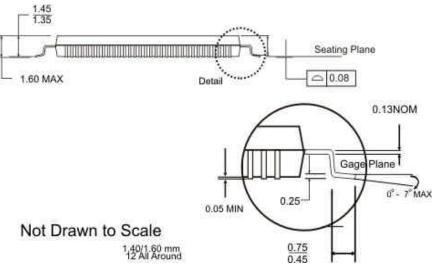


Figure 3 Mechanical Details

3.3 Package Type

PBK = 128-pin LQFP LQFP = Low-Profile Quad Flatpack



Figure 4 Pins Out

All digital inputs are TTL-compatible. All outputs are 3.3 V with CMOS levels. Inputs are not 5-V tolerant. A 100-? A (or 20-? A) pullup/pulldown is used.

3.4 AMBE-3000™ Chip Markings

AMBE-3000-10

AMBE-3000TM = The DVSI device part number.

- 10 = Chip type is 128 pin LQFP (Low-Profile Quad Flatpack)
- -11 = Chip type is BGA (Ball Grid Array)

DVSI = Digital Voice Systems, Incorporated

ADW-0BAJ9DW = Internal Texas Instruments part number for the AMBE-3000TM A = WF Code

D = Die Rev Code

W = Die Shrink Code

0BAJ9DW = Lot Trace Code 0B = 2 Digit YR/MO Code (Updated Monthly) AJ9D = Assy Lot W = Assy Site Code

3.5 Pin Out Table

Pin Number	Pin Descriptive Name	Pin Directio n	Notes	
1	3v3	PWR	3.3 V I/O Digital Power	
2	IF_SELECT0	Input		
3	IF_SELECT1	Input	Interface selection configuration	
4	IF_SELECT2	Input		
5	SD_ENABLE	Input	Soft Decision FEC enable / disable	
6	SK_ENABLE	Input	Skew Control enable / disable	
7	NS_ENABLE	Input	Noise Suppression enable / disable	
8	CP_ENABLE	Input	Companding enable / disable	
9	CP_SELECT	Input	Select a_law / u_law	
10	ADDE 414		Voltage Reference Output (1 V). Requires a low ESR (50 m? 1.5 %	
10	VREF_1V	-	ceramic bypass capacitor of 10 µF to analog ground.	
11	VREF_2V	-	Voltage Reference Output (2 V). Requires a low ESR (50 m? 1.5) ceramic bypass capacitor of 10 μF to analog ground.	
12	Ground	GND	Analog I/O Ground Pin	
13	3v3	PWR	3.3 V I/O Digital Power	
14	3v3	PWR	3.3 V I/O Digital Power	
15	Ground	GND	Analog I/O Ground Pin	
16	ADCRESEXT	-	ADC External Current Bias Resistor (24.9kO) to Ground	
18	McBSP_PKT_RxD	Input	McBSP Serial Channel Receive Data	
19	McBSP_PKT_TxD	Output	McBSP Serial Channel Transmit Data	
		_		
21	McBSP_PKT_CLKR	I/O PU	McBSP Serial Channel CLKR	
22	McBSP_PKT_FSX	I/O PU	McBSP Serial Channel FSX	
23	McBSP_PKT_CLKX	I/O PU	McBSP Serial Channel CLKX	
24	McBSP_PKT_FSR	I/O PU	McBSP Serial Channel FSR	
27	SPI_CLK	Input	This is the Serial clock from Codec. It also should be connected to SPI_CLK_IN	
28	SPISTEA	Input	This is the framing signal generated from SPIGENSTEA. This pin is connected to Pin #77.	
		_		
31	SPI_TX_DATA	Output	PCM Data from AMBE-3000™ to D/A Converter	

32	SPI_RX_DATA	Input	PCM Data from A/D Converter to AMBE-3000 TM
33	PACKET DATA0	I/O	Parallel Packet Data
34	PACKET_DATA1	I/O	Parallel Packet Data
35	PACKET DATA2	I/O	Parallel Packet Data
36	PACKET DATA3	I/O	Parallel Packet Data
37	PACKET _DATA4	I/O	Parallel Packet Data
38	PACKET _DATA5	I/O	Parallel Packet Data
30	THERET_DRING	1/0	Turaner rucket Data
40	PACKET_DATA6	I/O	Parallel Packet Data
41	PACKET_DATA7	I/O	Parallel Packet Data
43	PKT_RX_WAKE	Input	When the UART interface issued and low-power mode is enabled, this pin must be connected to UART_RX. This is used to make sure that standby mode is not entered while UART_RX is active. When the McBSP packet interface is used this signal should be connected to the inverted McBSP_PKT_FSR signal to make sure that standby mode is not entered while McBSP_PKT_RxD is active.
44	N/C	-	CURRENTLY UNASSIGNED
45	N/C	-	CURRENTLY UNASSIGNED
46	PPT_READ	Input	Read data from PACKET_DATA pins
47	PPT_WRITE	Input	Write data to PACKET_DATA pins
48	PPT_ACK	Output	
50	N/C	-	No Connection
51	N/C	-	No Connection 3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V
52	3v3	PWR	at all times after power-up sequence requirements have been met.
54	N/C		No Connection
	N/C	 	No Connection
55	IN/C	-	100 Connection
57	N/C		No Connection
58	X1/XCLKIN	Input	29.4912 MHz Clock input. This pin is also used to feed an external clock. The 28x can be operated with an external clock source, provided that the proper voltage levels are driven on the X1/XCLKIN pin. It should be noted that the X1/XCLKIN pin is referenced to the 1.8-V core digital power supply (VDD), rather than the 3.3-V I/O supply (VDDIO). A clamping diode may be used to clamp a buffered clock signal to ensure that the logic-high level does not exceed VDD (1.8 V) or a 1.8-V oscillator may be used.
	20000		
60	CODEC_RESETn	Output	Output to Reset the Codec
61	N/C	-	No Connection

64	N/C	-	No Connection
65	N/C	I/O	CURRENTLY UNASSIGNED
66	N/C	-	CURRENTLY UNASSIGNED
67	N/C	-	CURRENTLY UNASSIGNED
68	TX_RQST	Input	Channel Transmit Data Strobe TXRQST is a 20 ms frame signal used to control the encoder timing, when skew control is enabled. I must be high for at least 250 us. The period must be 20+/-1 ms. When the encoder schedule is relative to TXRQST, the time between rising edges is used to compute the subframe lengths. If skew control is not enabled, TXRQST can be used as a
			handshake signal. The AMBE-3000 TM Vocoder Chip sets TXRDY=1 when a packet is ready for transmission. The AMBE-3000 TM Vocoder Chip then waits for TXRQST=1 before it sends the packet. If handshaking is not desired, then you can hold TXRQST=1 at all times.
69	TX_RDY	Output	Transmit Packet Ready. Goes high as soon as the AMBE-3000 TM Vocoder Chip is ready to transmit a channel packet. Goes low after the packet output begins Regardless of the configuration, whenever the AMBE-3000 TM Vocoder Chip has a packet ready for transmission it sets TXRDY=1
70	I ² C_DATA	Output	I ² C_DATA (output from AMBE-3000™ Vocoder Chip to codec)
71	I ² C_CLK	Output	I ² C_CLK (output from AMBE-3000™ Vocoder Chip to codec)
72	RX_RQST	Input	RXRQST is a 20 ms frame signal used to control the encoder timing, when skew control is enabled. It must be high for at least 250 us. The period must be 20+/-1 ms. When the decoder schedule is relative to RXRQST, the time between rising edges is used to compute the subframe lengths.
75	RX_RDY	Output	Ready to Receive Packet. Goes high when the decoder packet buffer is empty and the AMBE-3000 TM Vocoder Chip is ready to receive the next packet. Goes low after the AMBE-3000 TM Vocoder Chip starts receiving a packet.
76	I/O Pin	Output	CURRENTLY UNASSIGNED
77	SPIGENSTEA	Output	Required when using the SPI interface. This is used to generate the SPISTEA signal. This pin should be connected to SPI_STEA (pin#28).
78	N/C	Input	CURRENTLY UNASSIGNED
79	I/O Pin	Input	CURRENTLY UNASSIGNED
80	SPI_FS	Input	Must be connected to the inverted frame sync signal from the codec if the SPI interface is used.
81	I/O Pin	I/O	CURRENTLY UNASSIGNED
84	I/O Pin	I/O	CURRENTLY UNASSIGNED
85	I/O Pin	I/O	CURRENTLY UNASSIGNED
86	SPI_CLK_IN	Input	For SPI Interface to function properly this pin must be connect to the Serial clock from Codec. (pin #27 SPI CLK)

87	N/C	-	No Connection
89	I/O Pin	I/O	CURRENTLY UNASSIGNED
90	I/O Pin	I/O	CURRENTLY UNASSIGNED
91	I/O Pin	I/O	CURRENTLY UNASSIGNED
92	N/C	-	No Connection
93	N/C	-	No Connection
96	N/C	-	No Connection
97	Ground	GND	Must be connected to ground
98	N/C	-	No Connection
99	N/C	-	No Connection
100	N/C	-	No Connection
101	I/O Pin	Output	CURRENTLY UNASSIGNED
105	N/C	_	No Connection
			Must be connected to the inverted frame sync signal from the code
106	SPI_WAKE	Input	if the SPI interface is used and Low Power Mode is enabled. The
			signal is used to wake the AMBE-3000™ from stand-by mode.
107	UART_RTS	Input	UART Ready to send
108	UART_CTS	Input	UART Clear to send
			This pin must be held high at reset, in order to select the desired boot mode. If this pin is held high at reset, then we will branch to the code in ROM/Flash and begin executing.
111	UART_TX	Output	(see table 3-4 of the TMS320F2811 Data Manual)
			After reset the pin gets configured as a UART transmit pin. Channel Transmit Data from AMBE-3000 TM SCI asynchronous serial port
112	UART_RX	Input	Channel Receive Data to AMBE-3000™ asynchronous serial port. When low-power mode is enabled, UART_RX must be connected to PKT_RX_WAKE. If the MCBSP packet interface is used instead of the UART Packet interface, and low power mode is enabled then this must be connected to the inverted McBSP_PKT_FSR signal (pin #24).
113	RESETn	Input	AMBE-3000 TM Reset pin. Active LOW
114	1v8	PWR	Supply Voltage 1.8-V Core Digital Power Pins
115	VSS1	GND	Analog I/O Ground Pin
116	N/C PIN	-	Reserved Must be left unconnected
117	VSSA2	GND	Analog I/O Ground Pin
118	VDDA2	PWR	3.3 V I/O Digital Power
119	ES_ENABLE	Input	Echo Suppressor enable / disable
120	EC_ENABLE	Input	Echo Canceller enable / disable
121	RATE5	Input	Vocoder Bit Rate Control Words

100	D 4 FFF 4	Ŧ .	l l
122	RATE4	Input	
123	RATE3	Input	
124	RATE2	Input	
125	RATE1	Input	
126	RATE0	Input	
127	Ground	GND	Connect to analog ground
128	Ground	GND	Analog I/O Ground Pin
17, 26, 30, 39, 53, 59, 62, 73, 88, 95, 103, 109	Ground	GND	Core and Digital I/O Pins to Ground.
20, 29, 42, 56, 63, 74, 82, 94, 102, 110	1v8	PWR	Supply Voltage 1.8-V Core Digital Power Pins.
25, 49, 83, 104	3v3	PWR	3.3 V I/O Digital Power Pins.

Table 8 Pinout List

NOTE:

Other than the power supply pins, no pin should be driven before the 3.3-V rail has reached recommended operating conditions. However, it is acceptable for an I/O pin to ramp along with the 3.3-V supply.

3.6 Hardware Configuration Pins

There is a set of configuration pins that allows the user to set-up the most common chip configurations. The chip boots up according to the configuration pins. Then after booting up, if any configuration packets are received, the configuration is changed accordingly. The configuration pins are only looked at boot time.

Hardware Configuration Pins for Interface Selection

Interface Configurations						
Mode	Configuration Pin #'s		in #'s	Charle Interfess	C1 1 I	
	4	3	2	Speech Interface	Channel Interface	
Codec Mode	0	0	0	SPI	UART	
Codec Mode	0	0	1	SPI	PPT	
Codec Mode	0	1	0	SPI	McBSP	
Codec Mode	0	1	1	McBSP	UART	
Codec Mode	1	0	0	McBSP	PPT	
Packet Mode	1	0	1	UART		
Packet Mode	1	1	0	PPT		
Packet Mode	1	1	1	McBSP		

Table 9 Interface Configuration Settings

4 Electrical Characteristics and Requirements

SECTION 4

Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to Vss.

4.1 Normal Operating Conditions

Normal Operating Conditions					
Operating Voltage	1.8-V Core, (135 MHz), 3.3-V I/O				
Operating Ambient Temperature Range	-40°C to 85°C				
Storage Temperature Range	-65°C to 150°C				
Junction Temperature Range	-40°C to 150°C				

Table 10 Normal Operating Conditions

Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see IC Package Thermal Metrics Application Report (TI literature number SPRA953) and Reliability Data for additional information, see IC Package Thermal Metrics Application Report and Reliability Data (TI literature number SPRA953).

4.2 Recommended Operating Conditions

	Parameter	Min	Nom	Max	Unit
$V_{\rm DDIO}$	Device Supply Voltage, I/O	3.14	V		
V_{DD}, V_{DD1}	Device Supply Voltage, CPU 1.8 V (135MHz)	1.71	1.8	1.89	V
VSS	Supply Voltage, GND	_	0	-	V
$V_{DDA1}, V_{DDA2},$	AV _{DDREFBG} , V _{DDAIO} ADC supply voltage	3.14	30.3	3.47	V
V_{DD3VFL}	Flash programming supply voltage	3.14 30.3 3.47			
$f_{SYSCLKOUT}$	Device clock frequency (system clock) $V_{DD} = 1.8 \text{ V} \pm 5\%$	2 135			MHz
V_{IH}	High-level input voltage All inputs except X1/XCLKIN	2.0 VDDIO			V
V_{IH}	High-level input voltage X1/XCLKIN (@50uA max)	0.7 VDD			V
$V_{\rm IL}$	Low-level input voltage All inputs except X1/XCLKIN	0.8			V
$V_{\rm IL}$	Low-level input voltage X1/XCLKIN (@50uA max)	$0.3 \text{ V}_{\text{DD}}$			V
I_{OH}	High-level output current source current, $V_{OH} = 2.4 \text{ V}$	-4			mA
I _{OH}	High-level output current source current, $V_{OH} = 2.4 \text{ V}$ (Group 2)	-8			mA
I_{OL}	Low-level output sink current $V_{OL} = V_{OL} MAX$	4			mA
I_{OL}	Low-level output sink current $V_{OL} = V_{OL} MAX$ (Group 2)		8		mA

Table 11 Recommended Operating Conditions

†† Group 2 pins are as follows: XINTF pins, T1CTRIP_PDPINTA TDO, XCLKOUT, XF, EMU0, and EMU1.

4.3 Absolute Maximum Ratings

Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the

operational sections of the data sheet. Exposure to Absolute Maximum Ratings for extended periods can aversely affect device reliability.

Absolute Maximum Ratings					
Supply voltage range, V_{DDIO} , V_{DD3VFL} , V_{DDA1} , V_{DDA2} , V_{DDAIO} , and $AV_{DDREFBG}$	-0.3 V to 4.6 V				
Supply voltage range, V _{DD} , V _{DD1}	-0.5 V to 2.5 V				
Input voltage range, V_{IN}	-0.3 V to 4.6 V				
Output voltage range, V _O	-0.3 V to 4.6 V				
Input clamp current I_{IK} ($V_{IN} < 0$ or $V_{IN} > V_{DDIO}$)†	± 20 mA				
Output clamp current I_{OK} ($V_O < 0$ or $V_O > V_{DDIO}$)	± 20 mA				

Table 12 Absolute Maximum Ratings

†Continuous clamp current per pin is ± 2 mA

4.4 Thermal Resistance Characteristics

Thermal Resistance Characteristics	
PsiJT	0.271°C/W
TJA	41.65°C/W
TJC	10.76°C/W

Table 13 Thermal Resistance Characteristics

Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to Vss.

4.5 Power Sequencing Requirements

The AMBE-3000[™] vocoder chip silicon requires dual voltages (1.8-V and 3.3-V) to power up the CPU, Flash, ROM, ADC, and the I/Os. To ensure the correct reset state for all modules during power up, there are some requirements to be met while powering up/powering down the device.

Enable power to all 3.3-V supply pins (VDDIO, VDD3VFL, VDDA1/VDDA2/VDDAIO/AVDDREFBG) and then ramp 1.8 V (VDD/VDD1) supply pins. 1.8 V (VDD/VDD1) should not reach 0.3 V until VDDIO has reached 2.5 V. This ensures the reset signal from the I/O pin has propagated through the I/O buffer to provide power-on reset to all the modules inside the device.

In other words, 3.3-V and 1.8-V can ramp together.

4.6 Power-Down Sequencing:

During power-down, the device reset should be asserted low (8 µs, minimum) before the VDD supply reaches 1.5 V. This will help to keep on-chip flash logic in reset prior to the VDDIO/VDD power supplies ramping down. It is recommended that the device reset control from "Low-Dropout (LDO)" regulators or voltage supervisors be used to meet this constraint. LDO regulators that facilitate power-sequencing (with the aid of additional external components) may be used to meet the power sequencing requirement.

Option 1:

In this approach, an external power sequencing circuit enables VDDIO first, then VDD and VDDI (1.8 V or

1.9 V). After 1.8 V (or 1.9 V) ramps, the 3.3 V for Flash (VDD3VFL) and ADC (VDDA1/VDDA2/AVDDREFBG) modules are ramped up. While option 1 is still valid, TI has simplified the requirement. Option 2 is the recommended approach.

Option 2:

Enable power to all 3.3-V supply pins (VDDIO, VDD3VFL, VDDA1/VDDA2/VDDAIO/AVDDREFBG) and then ramp 1.8 V (or 1.9 V) (VDD/VDD1) supply pins.

1.8 V or 1.9 V (VDD/VDD1) should not reach 0.3 V until VDDIO has reached 2.5 V. This ensures the reset signal from the I/O pin has propagated through the I/O buffer to provide power-on reset to all the modules inside the device. See Figure 6-10 for power-on reset timing.

4.7 Signal Transition Levels

Note that some of the signals use different reference voltages, see the recommended operating conditions table. Output levels are driven to a minimum logic-high level of 2.4~V and to a maximum logic-low level of 0.4~V.

Output transition times are specified as follows:

For a high-to-low transition, the level at which the output is said to be no longer high is below VOH(MIN) and the level at which the output is said to be low is VOL(MAX) and lower.

For a low-to-high transition, the level at which the output is said to be no longer low is above VOL(MAX) and the level at which the output is said to be high is VOH(MIN) and higher.

Input levels are as follows 0.8 V (VIL) and 2.0 V (VIH)

Input transition times are specified as follows:

For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is below VIH(MIN) and the level at which the input is said to be low is VIL(MAX) and lower.

For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is above VIL(MAX) and the level at which the input is said to be high is VIH(MIN) and higher.

Codec A/D / D/A Interface

Codec A/D / D/A Interface 5

The AMBE-3000TM Vocoder Chip operates with a speech data sample rate of 8kHz for both the A/D and D/A interfaces. This 8kHz data is input and output using a serial port on the AMBE-3000TM. The user can choose between hardware configuration pins or software control in order to the process of configuring the interface to the A/D-D/A chip.

5.1 Vocoder Front End Requirements

In order to ensure proper performance from the voice coder, it is necessary for the vocoder front end to meet a set of minimum performance requirements. For the purposes of this section the vocoder front end is considered to be the total combined response between microphone/speaker and the digital PCM interface to the vocoder, as shown in Figure 2-B. This includes any analog electronics plus the A-to-D and D-to-A converters as well as any digital filtering performed prior to the voice encoder or after the voice decoder.

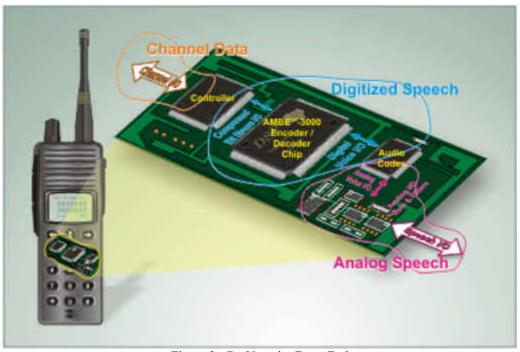


Figure 2 - B. Vocoder Front End

The AMBE+TM voice encoder and decoder operate with unity (i.e. 0 dB) gain. Consequently the analog input and output gain elements shown in Figure 2 are only used to match the sensitivity of the microphone and speaker with the A-to-D converters and D-to-A converters, respectively. It is recommended that the analog input gain be set such that the RMS speech level under nominal input conditions is 25 dB below the saturation point of the A-to-D converter (+3 dBm0). This level, which equates to -22 dBm0, is designed to provide sufficient margin to prevent the peaks of the speech waveform from being clipped by the Ato-D converter.

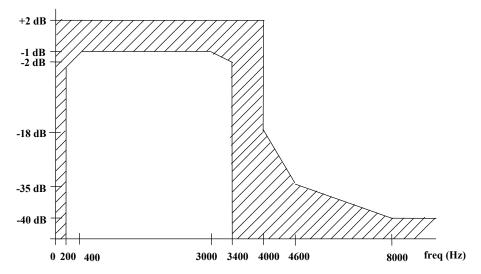


Figure 2 - C. Front End Input Filter Mask

The voice coder interface requires the A-to-D and D-to-A converters to operate at an 8 kHz sampling rate (i.e. a sampling period of 125 microseconds) at the digital input/output reference points. This requirement necessitates the use of analog filters at both the input and output to eliminate any frequency components above the Nyquist frequency (4 kHz). The recommended input filter mask is shown in Figure 2 - C, and the recommended output filter mask is shown in Figure 2 - D. For proper operation, the shaded zone of the respective figure should bound the frequency response of the front-end input and output.

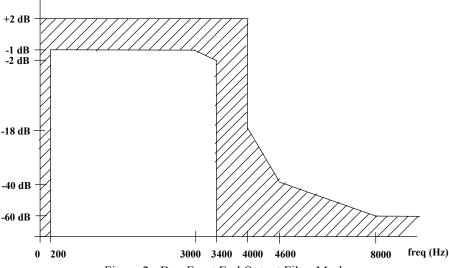


Figure 2 - D. Front End Output Filter Mask

This document assumes that the A-to-D converter produces digital samples where the maximum digital input level (+3 dBm0) is defined to be +/- 32767, and similarly, that the maximum digital output level of the D-to-A converter occurs at the same digital level of +/- 32767. If a converter is used which does not meet these assumptions then the digital gain elements shown in Figure 2 should be adjusted appropriately. Note that these assumptions are automatically satisfied if 16 bit linear A-to-D and D-to-A converters are used, in which case the digital gain elements should be set to unity gain.

An additional recommendation addresses the maximum noise level measured at the output reference points shown in Figure 2-B with the corresponding inputs set to zero. DVSI recommends that the noise level for both directions should not exceed -60 dBm0 with no corresponding input. In addition the isolation from cross talk (or echo) from the output to the input should exceed 45 dB which can be achieved via either passive (electrical and/or acoustic design) or active (echo cancellation and/or suppression) means.

6 Data and Configuration Packets

6.1 Overview

Interfacing to the AMBE-3000TM chip is engineered to provide as much flexibility as possible. The AMBE-3000TM chip always uses a packet format for the compressed voice data bits and for the chip configuration/control. The packets can be transferred using the UART port, parallel port or McBSP serial port for its physical interface based on the setting of hardware configuration pins. Packets are designed such that they can be as small as possible with no need to send and receive dummy data.

The AMBE-3000TM chip uses packets whether it is running in Codec Mode or Packet Mode. When in Codec Mode the packets are used for communicating with the AMBE-3000TM Vocoder chip to configure the vocoder, poll vocoder status information, as well as, transferring compressed voice data bits from the encoder or to the decoder. When running in Packet Mode the packets provide the same capabilities as Codec Mode plus they have the ability to transfer speech data samples to/from the encoder.

Every packet includes a HEADER that consists of a START byte for identification of the beginning of the packet, LENGTH data to indicate how many bytes are in the packet and a TYPE byte that specifies what to do with the packet. Packets are processed in a first-in-first-out manner.

6.2 Codec Mode Operation

When the AMBE-3000TM Vocoder Chip is in Codec Mode the chip uses separate interfaces for the digitized speech data samples and the compressed data bits. In this mode the AMBE-3000TM Vocoder Chip automatically sends out compressed data bits (channel data) packets every 20ms and expects to receive compressed data bits (channel data) packets every 20ms. The timing of the data transfer depends on the Codec clock.

6.3 Packet Mode Operation

In Packet Mode the AMBE-3000TM Vocoder Chip uses the same interface for the digitized speech data samples and the compressed data bits. In this mode, when the AMBE-3000TM Vocoder Chip receives packets, it processes the packets and sends response packets as soon as the data is ready. The AMBE-3000TM Vocoder Chip sends response packets in the same order that the packets are received. The AMBE-3000TM Vocoder Chip maintains a FIFO for received packets and a separate FIFO for packets that are awaiting transmission. The FIFOs are each large enough to accommodate up to two speech packets and two channel packets. The AMBE-3000TM Vocoder Chip can continue to transmit/receive packets while it is still processing prior packets.

When the AMBE-3000TM receives a speech packet, it takes the speech samples from the packet, encodes them and sends back a channel packet.

When the AMBE-3000TM receives a channel packet, it takes the channel data from the packet, decodes the channel data, and sends back a speech packet.

When the AMBE-3000TM receives a configuration control packet, it makes the requested configuration changes and sends back a configuration response packet.

6.4 Packet Interfaces

The AMBE-3000TM supports three separate physical interfaces that handle packets: UART, parallel port, and McBSP serial port. The user selects one of the three ports via configuration pins which are read by the AMBE-3000TM after power-up or reset. The packet formats are identical regardless of which physical interface is selected. Only one port is active at a time.

6.5 Packet Format

The packet format is as shown in Table 14 General Packet Format. A packet always starts with a PACKET HEADER byte. The next two bytes contain the PACKET LENGTH and the next byte contains the PACKET TYPE. Each packet can contain one or more fields which are shown as FIELD0 through FIELDn in Table 14 General Packet Format.

General Packet Format						
Packet Header			Fields			
START_BYTE	LENGTH	ТҮРЕ	FIELD ₀		FIELD _{N-1}	
1 byte	2 bytes	1 byte	L ₀ bytes		L _{N-1} bytes	

Table 14 General Packet Format

6.5.1 START_BYTE (1 byte)

Referring to Table 14 General Packet Format, the START_BYTE byte always has a fixed value of 0x61.

6.5.2 LENGTH (2 bytes)

Referring to Table 14 General Packet Format, the PACKET LENGTH occupies the second two bytes of the packet. The MS byte of the packet length is the second byte of the packet and the LS byte of the packet length is the third byte of the packet. Again referring to Table 14 General Packet Format, The PACKET LENGTH is the sum of L0 through LN-1. Note that the PACKET LENGTH excludes the first 4 bytes taken up by the START_BYTE, PACKET LENGTH, and PACKET TYPE. PACKET LENGTH is therefore the total length of the packet (in bytes) minus 4.

6.5.3 TYPE (1 byte)

Referring to Table 14 General Packet Format, the PACKET TYPE occupies the fourth byte of every packet.

There are 3 types' packets for the AMBE-3000™ vocoder chip.

Packet Types		
Packet Name	Description	Type Value (Hex)
Control / Configuration Packet	Used to setup chip modes, rates, configure hardware, initialize encoder/decoder, enable low-power mode, specify output packet formats, etc. When a control packet is received a response packet is sent back that indicates if there were any errors in the control packet. The control response packet may also contain response data for some control packets.	0x00
Speech Packet	When the codec interface is disabled, these packets are used to input speech data to encoder and to output speech data from the decoder. In	0x02

	addition to speech data, the packet can provide flags to control the encoder operation on a frame-by-frame basis. The speech packet also can have a field that forces the encoder to produce a tone frame.	
Channel Packet	These packets are used to input channel data to the decoder and to output channel data from the decoder. In addition to channel data the packet can provide flags that control the decoder operation on a frame-by-frame basis. A channel packet can also contain a field that forces the decoder to produce a tone frame.	0x01

Table 15 Packet Types

6.5.4 Packet Fields

Referring to Table 14 General Packet Format, the remainder of a packet after the START_BYTE, LENGTH, and TYPE is made up of Packet Fields. The packet fields contain the useful packet information. Various different packet fields each with their own format are defined in the next sections, however, the general format of a field is shown in Table 16 General Field Format.

A field consists of a field identifier followed by field data. The length of field data is dependent upon the field identifier. Many fields have fixed lengths. Some fields, such as those that contain speech samples or channel data are variable in length; and in such cases the length of the field data is embedded inside field data.

Field - Packet Format			
Field Identifier	Field Data		
1 byte	L _n -1 bytes		

Table 16 General Field Format

6.6 Control Packet Format (Packet Type 0x00)

A control packet uses the format as shown in Table 14 General Packet Format where the PACKET TYPE is equal to 0x00.

6.6.1 Control Packet Fields

The control packet supports the following packet fields:

Control Packet - Fields					
Field Name	Field Identifier	Field Length	Description		
VOCODER_ID	0x40	2 bytes	Specify current channel		
CMODE	0x40	2 bytes			
TONE	0x40	2 bytes	Packet contains Tone Data		
ECMODE	0x05	3 bytes	Encoder cmode flags for current channel		
DCMODE	0x06	3 bytes	Decoder cmode flags for current channel		

RATET	0x09	2 bytes	Select rate from table for current channel	
RATEP	0x0A	13 bytes	Select custom rate for current channel	
INIT	0x0B	2 bytes	Initialize encoder and/or decoder for current channel	
LOWPOWER	0x10	2 bytes	Enable or disable low-power mode	
PKT_STARTCODEC	0x2A	2 bytes	Switches from Packet mode to Codec Mode	
PKT_STOPCODEC	0x2B	1 byte	Switches from Codec Mode to Packet Mode	
PKT_PRODID	0x30	1 byte	Query for product identification	
PKT_PRODVERSTRING	0x31	1 byte	Query for product version number	
PKT_HALT	0x35	1 byte	Sets AMBE-3000™ into lowest power mode	

Table 17 Control Packet Fields

VOCODER_ID field (2 bytes) indicates the channel the control is intended for. Specifies the Channel to control

VOCODER_ID Field - Packet Format			
Field Identifier Data			
1 Byte	1 Byte		
0x40	Table 19 VOCODER_ID Field – Data		

Table 18 VOCODER_ID Field Format

VOCODER_ID Flag Values		
Description	Default Value	
Specifies vocoder to control	0x00	

Table 19 VOCODER_ID Field - Data

CMODE fields (3 bytes) can be used to change the mode of the encoder on a frame-by-frame basis. A CMODE field can also be sent as part of a configuration control packet prior to starting the vocoder. Normally, it is not necessary to send CMODE fields on a frame-by-frame basis.

CMODE Field - Format				
Field	Data			
Identifier	Data			
1 Byte	1 Word			
0x02	See Table 21 CMODE Parameters Table			

Table 20 CMODE Field Format

CMODE Field - parameters	
Encoder Input Flag Parameter	CMODE Value
Noise Suppression Enable	0x0040
DTX Enable	0x0400
Tone Detection Enable	0x1000
Tone Signaling	0x4000

Table 21 CMODE Parameters Table

TONE fields (3 bytes) can be used to force the encoder to transmit a tone frame. The frequency (or frequencies) and amplitude of the tone are specified by this field. For durations of greater than 20 ms, the TONE field must be repeated for consecutive frames. DTMF Code Hex Value Amplitude Value in Hex

TONE Field - Format				
Field Identifier	DTMF TONE Data Amplitude Data			
1 Byte	1 Byte	1 Byte		
0x08	See Table 23 TONE Index Values	See Table 24 TONE AMPLITUDE Values		

Table 22 TONE Field Format

TONE IDX (Field ID 0x00)

Can specify the index of a desired tone or a identify the index of a detected or received tone.

Tone Index Values					
Parameter Name	Descr	ription	TONE		
DTMF Digit	Frequency 1 (Hz)	Frequency 2 (Hz)	Index Value		
Single Tones	156.25	3812.5			
1	1209	697	0x80		
2	1336	697	0x84		
3	1477	697	0x88		
4	1209	770	0x81		
5	1336	770	0x85		
6	1477	770	0x89		
7	1209	852	0x82		
8	1336	852	0x86		
9	1477	852	0x8A		
0	1336	941	0x87		
*	1209	941	0x83		
#	1477	941	0x8B		
Α	1633	697	0x8C		
В	1633	770	0x8D		
С	1633	852	0x8E		
D	1633	941	0x8F		
Dial Tone	440	350	0x90		
Ring Tone	480	440	0x91		
Busy Tone	620	480	0x92		
Call Progress					
Inactive	N/A	N/A	0xff		
Invalid					

Table 23 TONE Index Values

These are the values for the Single, DTMF and Call Progress tones for Encode command packets and Decode command packets as well as Voice response packets and channel response packets.

Valid range: +3 to -90 (signed twos complement integer, units are dBm0)

TONE Amplitude Values (Field)

Can specify the amplitude of a desired tone or identify the index of a detected or received tone.

The DTMF Amplitude runs from 3 to -90 dBm0. This value is a signed byte (example: 0x03 = 3, 0x00 = 0, 0xC4 = -60).

TONE Amplitude Values	
Description	TONE Amplitude Value
Max Amplitude Level = +3	0x03
	•••
Min. Amplitude Level = -90	0xA6

Table 24 TONE AMPLITUDE Values

E_CMODE field (3 bytes) contains the cmode flags to be passed to the encoders. Enables/Disables Advanced Features

E_CMODE Field - Packet Format					
Field Identifier Data					
1 Byte 1 Word					
0x05	See Table 21 CMODE Parameters Table				

Table 25 E_CMODE Field Format

D CMODE field (3 bytes) contains the cmode flags to be passed to the decoders. Enables/Disables Advanced Features

D_CMODE Field - Packet Format					
Field Identifier	Data				
1 Byte	1 Word				
0x06	See Table 21 CMODE Parameters Table				

Table 26 D_CMODE Field Format

RATE_T field (2 bytes) specifies one of the built-in rates. Sets a built-in Rate from table

RATET Field - Pack	RATET Field - Packet Format					
Field Identifier	Data					
1 Byte	1 Byte					
0x09	Rate Index Value From Table 28 Rate Index Numbers					

Table 27 RATE_T Field Format

The rate of the AMBE-3000TM can be set through hardware pins or control words. After resetting the device, the coding rate can be modified for both the encoder and the decoder by sending a RATET or RATEP packet.

The AMBE-3000TM uses these six words to set the source and FEC coding rates. Table 30 Rate Control Words and Pin Settings lists predefined values for various source and FEC rates. These are only a representation of the most common rates that are requested. Please contact DVSI for additional rate information if the desired rates are not listed. The software

configurations in Table are compatible for use with the AMBE-2000TM (using AMBE^{TM+} technology) AMBE-1000TM (using AMBETM technology). If compatibility is not an issue, use the software codes to select speech and FEC rates that use the AMBE-3000TM (using AMBE+2TM technology).

Rate Index #	Total Rate	Speech Rate	FEC Rate
0	2400	2400	0
1	3600	3600	0
2	4800	3600	1200
3	4800	4800	0
4	9600	9600	0
5	2400	2350	50
6	9600	4850	4750
7	4800	4550	250
8	4800	3100	1700
9	7200	4400	2800
10	6400	4150	2250
11	3600	3350	250
12	8000	7750	250
13	8000	4650	3350
14	4000	3750	250
15	4000	4000	0
16	3600	3600	0
17	4000	4000	0
18	4800	4800	0
19	6400	6400	0
20	8000	8000	0
21	9600	9600	0
22	4000	2400	1600
23	4800	3600	1200
24	4800	4000	800
25	4800	2400	2400
26	6400	4000	2400
27	7200	4400	2800
28	8000	4000	4000
29	9600	2400	7200
30	9600	3600	6000
31	2000	2000	0

Table 28 Rate Index Numbers

RATE_P field (13 bytes)

specifies a custom rate. Custom Rate words

RATE_P - Field P	acket Format						
Field Identifier		Rate Control Words					
1 Byte		6 Words					
0x0A	RCW 0	RCW 1	RCW 2	RCW 3	RCW 4	RCW 5	

Table 29 RATE_P Field Format

			L_F i leiu i				1		T .					
Total	Speech	FEC							На	ırdwa	are P	in N	umb	ers
Rate (bps)	Rate (bps)	Rate (bps)	RCW 0	RCW 1	RCW 2	RCW 3	RCW 4	RCW 5	121	122	123	124	125	126
2000	2000	0	0x0128	0x0663	0x0000	0x0000	0x0000	0x6428	0	1	1	1	1	1
• 100	2400	0	0x0030	0x0763	0x0000	0x0000	0x0000	0x4330	0	0	0	0	0	0
2400	2350	50	0x002F	0x0763	0x0000	0x0000	0x0000	0x6930	0	0	0	1	0	1
3000														
	3600	0	0x0048	0x0767	0x0000	0x0000	0x0000	0x6F48	0	0	0	0	0	1
3600	3350	250	0x0043	0x0765	0x0080	0x0000	0x0000	0x5348	0	0	1	0	1	1
	3600	0	0x0248	0x0763	0x0000	0x0000	0x0000	0x3948	0	1	0	0	0	0
	4000	0	0x0050	0x0887	0x0000	0x0000	0x0000	0x3950	0	0	1	1	1	1
	3750	250	0x0030 0x004B	0x0367	0x0000	0x0000	0x0000	0x3950 0x3950	0	0	1	1	1	0
	4000	0	0x004D	0x0765	0x0000	0x0000	0x0000	0x4150	0	1	0	0	0	1
4000	2400	1600	0x0130	0x0763	0x0001	0x0000	0x341A	0x6750	0	1	0	1	1	0
	4800	0	0x0060	0x0887	0x0000	0x0000	0x0000	0x7960	0	0	0	0	1	1
	4550	250	0x005B	0x0887	0x0080	0x0000	0x0000	0x6860	0	0	0	1	1	1
	3600	1200	0x0048	0x0767	0x2030	0x0000	0x0000	0x7060	0	0	0	0	1	0
	3100	1700	0x003E	0x0765	0x2800	0x0000	0x0000	0x7460	0	0	1	0	0	0
	4800	0	0x0260	0x0767	0x0000	0x0000	0x0000	0x6C60	0	1	0	0	1	0
4800	4000 3600	800 1200	0x0250	0x0765 0x0763	0x2010 0x0001	0x0000 0x0000	0x0000 0x2412	0x7460 0x6860	0	1	0	0	0	0
	2400	2400	0x0248 0x0130	0x0763 $0x0763$	0x0001 0x0005	0x0000 0x180C	0x2412 0x3018	0x0860 0x7360	0	1	1	0	0	1
	2400	2400	0.0130	0.0703	0.00003	0.000	0.0.010	0.77500	U	1	1	U	U	1
	4150	2250	0x0053	0x0887	0x2C00	0x0000	0x0000	0x5680	0	0	1	0	1	0
6400	6400	0	0x0280	0x0887	0x0000	0x0000	0x0000	0x6C80	0	1	0	1	0	0
6400	4000	2400	0x0250	0x0765	0x0001	0x0000	0x542A	0x5280	0	1	1	0	1	1
	4400	2800	0x0058	0x0887	0x3000	0x0000	0x0000	0x4490	0	0	1	0	1	0
7200	4400	2800	0x0058	0x0765	0x0009	0x1E0C	0x4127	0x7390	0	1	1	0	1	1
. 200	. 100	_000	0.10200	0.10 / 0.5	0.1000)	0.11200	V.1112/	0.17070	J			Ü		
	7750	250	0x009B	0x0997	0x0080	0x0000	0x0000	0x49A0	0	0	1	1	0	0
	4650	3350	0x005D	0x0887	0x3400	0x0000	0x0000	0x31A0	0	0	1	1	0	1
8000	8000	0	0x02A0	0x0997	0x0000	0x0000	0x0000	0x52A0	0	1	0	1	0	0
0000	4000	4000	0x0250	0x0765	0x0005	0x2010	0x6834	0x72A0	0	1	1	1	0	0

	9600	0	0x00C0	0x0997	0x0000	0x0000	0x0000	0x72C0	0	0	0	1	0	0
	4850	4750	0x0061	0x0887	0xE400	0x0000	0x0000	0x67C0	0	0	0	1	1	0
	9600	0	0x02C0	0x0997	0x0000	0x0000	0x0000	0x69C0	0	1	0	1	0	1
9600	3600	6000	0x0248	0x0763	0x000E	0x4010	0x6A2E	0x65C0	0	1	1	1	1	0
9000	2400	7200	0x0130	0x0763	0x000E	0x681A	0x511B	0x76C0	0	1	1	1	0	1

Table 30 Rate Control Words and Pin Settings

Table Key for Table 28 Rate Index Numbers and Table 30 Rate Control Words and Pin Settings		
AMBE-1000™ Rates (AMBE™ Vocoder)		
AMBE-2000 TM Rates (AMBE+TM Vocoder)		
AMBE-3000 TM Rates (AMBE+2 TM Vocoder)		

INIT field (2 bytes)

contains initialization flags. If bit 0 of byte 1 is set the encoder is initialized.

If bit 1 of byte 1 is set the decoder is initialized.

If bits 0 and 1 of byte 1 are both set, the encoder and decoder are both initialized.

INIT Field - Packet Format					
Field Identifier	Data				
1 Byte	1 Byte				
0x0B	Value From Table 32 INIT Field - Data				

Table 31 INIT Field Format

Options for INIT Field	
Description	Value
Encoder Initialized	0x1
Decoder Initialized	0x2
Encoder and Decoder Initialized	0x3

Table 32 INIT Field - Data

LOWPOWER field (2 bytes)

tells the AMBE-3000TM to enable or disable low-power mode. The AMBE-3000TM Vocoder Chip will go into a mode, which conserves power, where no voice packets are being processed. By default, low power mode is disabled. After a LOWPOWER packet is received, the chip enters standby whenever it is idle

LOWPOWER Field - Packet Format					
Field Identifier	Data				
1 Byte	1 Byte				
0x10	Value From Table 34 LOWPOWER Field Settings				

Table 33 LOWPOWER Field Format

Bit 0 of byte 1 enables and disables low power mode.

Options for LOWPOWER Field	
Description	Value
Low Power Mode Disabled	0x0
Low Power Mode Enabled	0x1

Table 34 LOWPOWER Field Settings

PKT_STARTCODEC field (2 bytes) this will switch the AMBE-3000[™] from packet mode to Codec Mode. After entering Codec mode the AMBE-3000[™] will output packets containing channel data every 20ms. The channel data is obtained by encoding the speech samples received from the selected codec interface.

PKT_STARTCODEC Field - Packet Format		
Field Identifier	Data	
1 Byte	1 Byte	
0x2A	See Table 36 PKT_STARTCODEC Field Data	

Table 35 VOCODER _ID Field Format

PKT_STARTCODEC Flag Values			
Value	Description		
	Codec Interface	Pass thru	Skew Control
0x0	SPI	Disabled	Disabled
0x1	SPI	Disabled	Enabled
0x2	SPI	Enabled	Disabled
0x3	SPI	Enabled	Enabled
0x4	McBSP	Disabled	Disabled
0x5	McBSP	Disabled	Enabled
0x6	McBSP	Enabled	Disabled
0x7	McBSP	Enabled	Enabled

Table 36 PKT_STARTCODEC Field Data

PKT_STOPCODEC field (1 byte) this will switch the AMBE-3000TM from Codec Mode to Packet Mode. After entering Packet mode the AMBE-3000TM will stop outputting packets containing channel data every 20ms.

PKT_STOPCODEC Field - Packet Format		
Field Identifier	Data	
1 Byte	0 Byte	
0x2B	No Data Needed	

Table 37 PKT_STOPCODEC Field

PKT_PRODID field (1 byte) this field will cause the AMBE- 3000^{TM} to respond with a string that contains the product identification for example "AMBE3000"

PKT_PRODID Field - Packet Format	
Field Identifier	Data

1 Byte	0 Byte
0x30	No Data Needed

Table 38 PKT_PRODID Field

PKT_VERSTRING field (1 byte) this field will cause the AMBE-3000[™] to respond with a string that contains the product version number for example "V100.E100.XXXX.XXXX.C0000"

PKT_VERSTRING Field - Packet Format		
Field Identifier	Data	
1 Byte	0 Byte	
0x31	No Data Needed	

Table 39 PKT_VERSTRING Field

PKT_HALT field (1 byte) this field will cause the AMBE-3000TM to enter halt mode. In this mode the AMBE-3000TM will consume the least amount of power possible. The only way to exit this mode is to perform a hardware reset.

PKT_HALT Field - Packet Format		
Field Identifier	Data	
1 Byte	0 Byte	
0x35	No Data Needed	

Table 40 PKT_HALT Field

6.7 Speech Packet Format (Packet Type 0x02)

A speech packet uses the general packet format where the PACKET TYPE is equal to 0x2. Speech packets are used only when the AMBE-3000TM is operating in Packet Mode.

6.7.1 Speech Packet Fields

The speech packet supports the following packet fields:

Speech Packet - I	Speech Packet - Fields		
Field Name	Field Identifier	Field Length	Description
VOCODER_ID	0x40	2 bytes	The vocoder for subsequent fields
SPEECHD	0x00	Variable bytes	The speech data to be encoded for current vocoder
CMODE	0x02	3 bytes	cmode flags for current vocoder's encoder
TONE	0x08	3 bytes	Force current encoder to generate tone frames

Table 41 Speech Packet Fields

VOCODER_ID field (2 bytes) indicates the vocoder the control is intended for. It is the same as described in the Table 18 VOCODER_ID Field Format

SPEECHD field (variable number of bytes) contains the speech data to be encoded for current channel. 156 = {samples} = 164

Raw Speech data to be input to the encoder or output from the decoder. The speech is denoted as Speech[0] thru Speech[2*{samples} -1]. Speech[0] is the MS byte of the first sample. Speech[1] is the LS byte of the first sample. Speech[2*{samples}-2] is the MS byte of the last sample.

SPEECHD Field - Packet Format		
Field Identifier	Number of Samples	Data
1 Byte	1 Byte	Variable Number of Samples
0x00	$0x9C \le \{samples\} \le 0xA4$	2 thru 2+2*{samples}-1

Table 42 SPEECHD Field Format

CMODE

CMODE fields is the same as described In the Control Packet Field Description Table 20 CMODE Field Format Description

TONE

TONE field is the same as described In the Control Packet Field Description Table 22 TONE Field Format Description

6.8 Channel Packet Format (Packet Type 0x01)

A channel packet uses the format as shown in Table 14 General Packet Format where the PACKET TYPE is equal to 0x01.

6.8.1 Channel Packet Fields

The channel packet supports the following packet fields:

Channel Packet Fields			
Field Name	Field Identifier	Field Length	Description
VOCODER_ID	0x40	2 bytes	The vocoder for subsequent fields
CHAND	0x01	Variable bytes	Compressed speech data to be decoded for current vocoder
SAMPLES	0x30	2 bytes	Number of samples to generate for current decoder frame
CMODE	0x02	3 bytes	CMODE flags for current vocoder's decoder
TONE	0x08	3 bytes	Force current vocoder's decoder to generate tone frame

Table 43 Channel Packet Fields

VOCODER_ID field (2 bytes) indicates the vocoder the control is intended for. It is the same as described in the Table 18 VOCODER_ID Field Format

CHAND (variable number of bytes) channel bits to be decoded, packet 8 bits per byte.

Compressed data bits from the encoder or to the decoder (packed 8 bits per byte). The data is denoted by Chand[0] to Chand[(Bits-1)/8]. Chand[0] contains the bits which are most sensitive to bit errors. Chand[(Bits-1)/8] contain the bits which are least sensitive to bit errors. 2 thru 1+(Bits+7)/8 bytes

CHAND Field - Packet Format

Field Identifier	Number of Bits	Data
1 Byte	1 Byte	Variable Number of Bits
0x01	$40 = {bits} = 192$	$0x28 \le \{bits\} \le 0xC0$

Table 44 CHAND Field - Format

CMODE

CMODE fields is the same as described In the Control Packet Field Description Table 20 CMODE Field Format Description

TONE

TONE field is the same as described In the Control Packet Field Description Table 22 TONE Field Format Description

6.9 Example Packets

6.9.1 Speech Packet Example 1

Following is an example speech packet (hexadecimal) for input to the AMBE-3000TM Vocoder Chip:

						Spo	eech Packet		
Header			VOCODERID Field			SPEECHD Field			
StartByte	Length	Type	VOCODERID field identifier	VOCODER Number	SPEECHD field identifier SPEECHD No. of Samples		SPEECHD Data		
61	0144	02	40	00	00	AO	000000100020003000400050006000700080009 000A000B000C000D000E000F0010001100120013 001400150001601700180019001A001B001C001D 001E001F00200021002200230024002500260027 00280029002A002B002C002D002E002F00300031 00320033003400350036003700380039003A003B 003C003D003E003F004000410042004300440045 0046004700480049004A004B004C004D004E004F 0050005100520053005400550056005700580059 005A005B005C005D005E005F0060006100620063 006400650066006700680069006A006B006C006D 006E006F00700071007200730074007500760077 00780079007A007B007C007D007E007F00800081 00820083008400850086008700880089008A008B 008C008D008E008F009000910092009300940095		

Table 45 Speech Packet Example 1

The first byte (0x61) is the packet header byte. The next two bytes (0x0144) specify the total length of the packet fields is 324 bytes. Note that the total packet length including the header, length,, and type is 328 bytes. The next byte (0x02) specifies that

the packet type is a speech packet. The next byte (0x40) is the field identifier for a VocoderID field and the following byte (0x00) specifies vocoder 0 for subsequent fields. The next byte (0x00) is a SPEECHD field identifier and the following byte (0xA0) tells the AMBE-3000TM Vocoder Chip that the SPEECHD Data field contains 160 speech samples, occupying 320 bytes. The final 320 bytes contain the speech samples. For this particular example the speech samples increment from 0 to 159. Note that the MS byte of each sample is transmitted/received prior to the LS byte of each sample. This convention is used whenever a 16-bit number is contained in a packet.

Also note that the default vocoder number, if no VOCODERID fields occur in the packet, is vocoder 0. So for this example, since vocoder 0 is specified in the VOCODERID field, the VOCODERID field could have been omitted.

6.9.2 Speech Packet Example 2

The following packet is another example of speech input

						\$	Speech Packet						
	Header		VOCODERID Field		SP		SPEECHD Field			IODE ield	ТО	NE Fi	eld
StartByte	Length	Type	VOCODERID Field Identifier	VOCODER Number	SPEECHD Field identifier	SPEECHD No. of Samples	SPEECHD Data	CMODE Field identifier	CMODE flags	TONE Field identifier	TONE Index Value	TONE Amplifier Value	
61	014A	02	40	00	00	AO	0000001000200030004 00050006000700080009 000A000B000C000D000E 000F0010001100120013 00140015000160170018 0019001A001B001C001D 001E001F002000210022 00230024002500260027 00280029002A002B002C 002D002E002F00300031 00320033003400350036 003700380039003A003B 003C003D003E003F0040 00410042004300440045 0046004700480049004A 004B004C004D004E004F 00500051005200530054 00550056005700580059 005A005B005C005D005E 005F0060006100620063 00640065006600670068 0069006A006B006C006D 006E006F007000710072 00730074007500760077 00780079007A007B007C 007D007E007F00800081 00820083008400850086	02	0000	08	03	00	

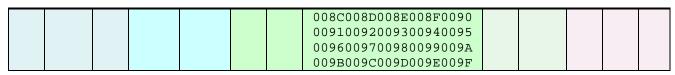


Table 46 Speech Packet Example 2

This is the similar to the prior example except that a CMODE field and a TONE field were added to the end of the packet. The packet indicates that the speech samples will be passed to the encoder for channel 0. The length field changed to 0x014a because the packet length increased by 6 bytes. For the new bytes at the end of the packet (0x02) is the CMODE field identifier. The following two bytes (0x0000) specifies that the encoder cmode flags should be set to 0x0000. The next byte (0x08) is a TONE field identifier. The next two bytes (0x03) and (0x00) specify tone index of 3 and tone amplitude of 0 dBm0.

6.9.3 Channel Packet Example 1

Following is an example channel packet (hexadecimal) for input to the AMBE-3000TM Vocoder Chip:

	Channel Packet							
Header		CHAND Field						
StartByte Length Type		CHAND Field Identifier	CHAND No. of Bits	CHAND Data				
61	000C	01	01	50	00112233445566778899			

Table 47 Channel Packet Example 1

The first byte (0x61) is the packet header byte. The next two bytes (0x000C) specify that the length of the packet (excluding the header, length, and type bytes) is 12 bytes. The next byte (0x01) specifies that the packet type is a channel packet. The next byte (0x01) is the field identifier for a CHAND field. The next byte (0x50) specifies that 80 bits of channel data follow. The bits are packed 8 bits per byte such that the 80 bits are contained in the 10 bytes that follow. The final 10 bytes contain the channel data. The bits are output with the most significant (and most sensitive to bit-errors) bits in the first byte and the least significant (and least sensitive to bit-errors) bits in the last byte. For bit-rates that are not an even multiple of 400 bps, the MSBs of the last byte are used to hold the channel data, and the LSBs will be padded with zeros.

Note that in this example, the packet contains no VOCODERID field, and therefore channel 0 is assumed.

6.9.4 Channel Packet Example 2

Following is another example of a channel packet for input to the AMBE-3000™ Vocoder Chip:

Channel Packet					
Header	VOCODERID Field	CHAND Field	SAMPLES Field	CMODE Field	

StartByte	Length	Type	VOCODERID Field Identifier	VOCODER Number	CHAND Field Identifier	CHAND Number of Bits	CHAND Data	SAMPLES Field Identifier	SAMPLES Number of Samples	CMODE Field	CMODE Value
61	0010	01	40	00	01	38	00112233445566	03	A1	02	0000

Table 48 Channel Packet Example 2

The first byte (0x61) is the packet header byte. The next two bytes (0x0010), specify that the length of the packet (excluding the header, length, and type bytes) is 16 bytes. The next byte (0x01) specifies that the packet type is a channel packet. The next byte (0x40), is a VocoderID field identifier and the byte that follows (0x00) specifies vocoder 0 for subsequent fields. The next byte (0x01) is a CHAND specifier and the following byte (0x38) specifies that 56 bits (7 bytes) of channel data follow. The next 7 bytes contain the channel data to be decoded by the decoder. The next byte (0x03), is a field identifier for a SAMPLES field. The next byte (0xA1), specifies that the decoder will output 161 samples rather than the normal 160 samples when it produces the resulting speech packet. The next byte (0x02), is the field identifier for a CMODE field. The final 2 bytes (0x0000), are used to control the decoder mode.

7 **Appendices**

7.1 Associated Algorithmic Delay

The associated delay due to the coding/decoding algorithm is shown below

7.1.1 Encoder Delay

Algorithmic Delay = 32 msEncoder Processing Delay = \sim 6 ms

7.1.2 Decoder Delay

Algorithmic Delay = 10 msDecoder Processing Delay = \sim 4 ms

7.1.3 Total Delay

Total Delay = 32 ms + 6 ms + 10 ms + 4 ms = 52 ms

Frame Processing Delay = 6 ms (encoder) + 4 ms = 10 ms

8 Support

8.1 DVSI Contact Information

If you have questions regarding the AMBE-3000TM- Vocoder Chip please contact:

Digital Voice Systems, Inc. 234 Littleton Road Westford, MA 01886 USA

Phone: (978) 392-0002 Fax: (978) 392-8866

email: <u>info@dvsinc.com</u> web site: <u>www.dvsinc.com</u>

Environmental Specifications

9 Environmental Specifications

(as stated by Texas Instruments Inc. Material Declaration Certificate for Semiconductor Products)

Part Number Details

DVSI Part Number	AMBE-3000™ Vocoder Chip		
TI Part Number1	TMS320F2811PBKA		
PN Type1A	Std.		

Pb-Free (RoHS) Details

RoHS & High-Temp Compatible	Yes		
Conversion Date2	10, October 2005 (DC 0541)		
Available Supply Date3	30, March 2006		

Green (RoHS & no Sb/Br) Details

•	31) 2 VII II					
	Green Compliant	Yes				
	Conversion Date2	10, October 2005 (DC 0541)				
	Available Supply Date3	30, March 2006				

JIG Rating

JIG Material Content Compliance4	Level A & B
----------------------------------	-------------

Package Details

Package Type	PBK
Pins	128
Assembly Site	TI PHILIPPINES A/T
Current Lead/Ball Finish	CU NIPDAU
Planned Lead/Ball Finish	
Current MSL/Reflow Ratings	Level-2-260C-1YR
Device Mass (mg)	615.000

RoHS Restricted Substances4 (JIG Level A)5

(10 20 (0111))	nnm	0
Cadmium (Cd)	ppm	U
Gadiiiaiii (Ga)	Amount (mg)	0
Hex.Chromium (Cr6+)	ppm	0
Tiex.Cilionilatii (Cio+)	Amount (mg)	0
Lead (Pb)	ppm	300
Lead (FD)	Amount (mg)	0.0185
Mercury (Hg)	ppm	0
iviercury (rig)	Amount (mg)	0
PBB's (RoHS defined)	ppm	0
r bb's (Norio delilied)	Amount (mg)	0
PBDE's (RoHS defined)	ppm	0
T BDE's (Notifs defined)	Amount (mg)	0

JIG Level A

All other JIG Level A Substances	ppm	0
All other sto Level A Substances	Amount (mg)	0

Green Reportable Substances (JIG Level B)5

Antimony (Sb)	ppm	0
Antimony (3b)	Amount (mg)	0
Brominated Flame Retardants	ppm	0
(Other than PBBS or PBDEs)	Amount (mg)	0

JIG Level B

Bismuth (Bi)	ppm	0
Districtif (DI)	Amount (mg)	0
Nickel-Exposed (Ni)	ppm	0
	Amount (mg)	0
All Other JIG Level B Substances	ppm	0
	Amount (mg)	0

Recyclable Metals6

Copper (Cu)	ppm	99739
Copper (Cu)	Amount (mg)	60.2303
Cold (Au)	ppm	4990
Gold (Au)	Amount (mg)	3.0692
Magnesium (Mg)	ppm	0
	Amount (mg)	0
Nickel-Not Exposed (Ni)	ppm	4065
	Amount (mg)	2.5002
Palladium (Pd)	ppm	338
	Amount (mg)	0.2084
Silver (Ag)	ppm	4666
	Amount (mg)	2.8701

Last Update7

17, February 2007

No material contents are available for this part.

**Pb-Free or Green Alternative BGA Parts

A Pb-Free or Green version of this BGA device may be available under a new part number. Typically, the package code for a device is embedded in the part number. Package codes Gxx, YEx (where x can be any letter), YE and WAS will be changed to new codes during the conversion to Pb-Free and Green. The new codes are Zxx, YZx, YZ and WAZ. Using this new package nomenclature in the part number you may locate information on the Pb-Free and Green version of the device. To learn more, contact your TI sales rep.

Note (1) - Check the Available Supply Dates before ordering. Orders cannot be placed by assembly site.

Note (IA) - PN Type indicates whether a part number is a "Pb-Free" unique PN or a standard TI PN. If you need to order RoHS & high-temp compatible parts and don't want to hassle with date codes, use the "Pb-Free" unique PN when placing orders.

Note (2) - The forecasted or actual conversion date for the specific device package, pin count, & assembly site. See Glossary of Terms for more details. (http://focus.ti.com/quality/docs/prdcntglossary.jsp?templateId=5909)

Note (3) - The forecasted or actual date that the device will be available for purchase.

Note (4) - If a device's material content is less than the thresholds in the Joint Industry Guide (JIG) Level A & Level B substances tables, then "Level A & B" will be displayed. Other options are "Level A ONLY" or "None". For availability of "Level A & B" devices, use the Green Available Supply Date (ASD). For "Level A ONLY" devices, use the Pb-Free ASD.

Note (5) - ppm calculations are at the homogeneous material level. See Glossary of Terms for more details. http://focus.ti.com/quality/docs/prdcntglossary.jsp?templateId=5909

Note (6) - ppm calculations are at the component level. See Glossary of Terms for more details. http://focus.ti.com/quality/docs/prdcntglossary.jsp?templateId=5909

^{*}Part Number

Note (7) - Reflects the date when a change was last detected in the associated row of information. Change monitoring began 2005-08-11.

Important Part Information

There is a remote possibility the Customer Part Number (CPN) your company uses could reference more than one TI part number. This is due to two or more users (EMSIs or subcontractors) using the same CPN for different TI part numbers. If this occurs, please check your Customer Part Number and cross reference it with the TI part number seen on this page.

Product Content Methodology

For an explanation of the methods used to determine material weights, See Product Content Methodology, http://focus.ti.com/quality/docs/gencontent.tsp?templateId=5909&navigationId=11220&path=templatedata/cm/ecoinfo/data/esh_methodology

Important Warranty and Disclaimer Information

TI bases its material content knowledge on information provided by third parties and has taken and continues to take reasonable steps to provide representative and accurate information, but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. TI provides an exclusive warranty for certain material content representations in the Material Declaration Certificate for Semiconductor Products, which can be found at www.ti.com/leadfree. All other material content information is provided "as is."

Notes

10 Notes

11 History of Revisions

History of Revisions				
Revision Number	Date of Revision	Description	Pages	